PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Measure-theoretical properties of the unstable foliation of
two-dimensional differentiable area-preserving systems

A. Adrover and M. Giona
Dipartimento di Ingegneria Chimica, Universidi Roma “La Sapienza,” via Eudossiana 18, 00184 Roma, Italy
(Received 23 November 1998

This article analyzes in detail the statistical and measure-theoretical properties of the nonuniform stationary
measure, referred to as theinvariant measure, associated with the spatial length distribution of the integral
manifolds of the unstable invariant foliation in two-dimensional differentiable area-preserving systems. The
analysis is developed starting from a sequence of analytical approximations for the associated density. These
approximations are related to the properties of the Jacobian matrix othtieeration of a Poincarmap. The
w-invariant measure plays a fundamental role in the study of transport phenomena in laminar-chaotic fluid-
mixing systems, for which it furnishes the asymptotic invariant distribution of intermaterial contact length
between two fluids. Thev-invariant measure turns out to be singular and exhibits multifractal features. Its
associated density displays local self-similarity in ameighborhood of hyperbolic periodic points. The
cancellation exponent of the signed measure associated wittv theasure by attaching at each point the
direction of the field of the asymptotic unstable eigenvectors is also analyzed. The only case for which the
w-invariant measure is absolutely continuous is given by the conjugation of hyperbolic toral automorphisms
with a linear automorphism. The connections with the statistical properties, and in particular with the stretching
dynamics, are addressed in detp81063-651X99)15405-9

PACS numbes): 05.45-a, 84.40.1k, 47.53rn, 83.50.Ws

[. INTRODUCTION As observed by Aref in 198fB], 2D incompressible fluid
flows in laminar conditiongi.e., if the inertial contribution is
In many physical problems involving chaotic Hamiltonian negligible with respect to the viscouare perfectly equiva-
systems and symplectic maps, the central issue is given bgnt to Hamiltonian systems through identification of the
the evolution of vectors and line elements and of curve arcstream function with the Hamiltonian and the physical space
advected by the dynamics. Examples include the fast dywith the phase space of Hamiltonian dynamics. This is be-
namo problems in magnetohydrodynamiésr high values cause, under the conditions stated above, the velocity\ield
of the magnetic Reynolds numbd,2], where attention is in Eq. (1.1) can be related to the partial derivatives of the
focused on the properties of the magnetic field or fluid dy-stream functiony as v=(dy/dy,— dyl dx)t. This equiva-
namic phenomena involving incompressible floy3,4], lence makes it possible to extrapolate the simulation and
where interfacial phenomena are controlled by the statisticadxperimental results obtained by considering laminar fluid
properties associated with the evolution of curyestwo-  motion to Hamiltonian systems and vice versa.

dimensional(2D) system$ or of surfaces(in 3D systemy It has been observed both numerically and experimentally
since they form interfaces between different fluid elementghat area-preserving dynami¢such as incompressible fluid
[5]. flows) display invariant patterns in the evolution of line ele-

The evolution of interfaces advected by chaotic flowsments advected by the velocity fieldunder the condition
controls many dynamic phenomena in fluid systems and itthat the dynamical system E{l.1 is chaotic[10,11] (see
understanding is the starting point for a theory of transporSec. Il for a formal definition of chags These invariant
and reaction in laminar chaotic flow$,7]. If the diffusive  properties have been attributed to the dominant role of the
mass transfer is small compared to the convective contribuinstable manifolds of hyperbolic periodic points which are
tion (i.e., if the Pelet number is sufficiently highthe ef-  dense within a chaotic regidd2]. The geometrical explana-
fects of diffusion may be overlooked at short or intermediatetion of this phenomenon lies in the fact that the restriction of
time scales. Under these conditions, the kinematics of a past Poincaresection of a time-periodic 2D differentiable area-
sive tracer particle is described by an ordinary differentialpreserving flow within a chaotic region defines upon it a

equation[8,9] hyperbolic map(see Sec. Il for a thorough analysis of this
point), thus inheriting the global geometrical properties char-
dx(t) acterizing these systems. In particular, within the tangent

T =v(x(t),t), (1.)  space of each point of an invariant chaotic region, an un-

stable directiore’(x) may be defined which is tangent to any
material line passing throughthat has evolved for a suffi-
wherev is a time-dependent velocity field ame- (x,y)" the  ciently long time. The hyperbolic nature of a chaotic differ-
position vector of the advected particle. This situation cusentiable area-preserving dynamics determines not only the
tomarily occurs for highly viscous fluids and polymeric so- geometry and topology of mixingsince it defines the
lutions, which constitute the natural realm of laminar chaoticasymptotic unstable directiogf(x) attained by tangent vec-
flows. tors to fluid interfacels but enables us to frame in a quanti-
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tative way the measure-theoretical and statistical propertiewhere x,=x(nT), defined on a two-dimensional manifold
in the evolution of material interfaces as an intrinsic propertyM. Attention is restricted to differentiable dynamics. We
of the spatial length distribution of a generic integral mani-therefore assume thdt is at least &C? diffeomorphism, i.e.,
fold belonging to the unstable foliation. fortiori that both® and its inversed ! are differentiable

In a previous articlg13], it was shown that hyperbolic and their Jacobian matrices continuous.
area-preserving maps on the torus conjugate to a linear one We use the termb* (x) =d®(y)/dy|,_ to indicate the
are characterized by a nonuniform measure associated withifferential of ® at x, i.e., its Jacobian matrixp*(x) is a
the length distribution of the contact interface between fluidmapping of the tangent spadeM, at x onto the tangent
elements. This measure is intrinsically different from the uni-spaceT Mg« () at the image point. The differentid}™ (x) is
form ergodic measure and may be viewed as the invariarthe basic mapping in order to analyze the first-order proper-
measure associated with the dynamical systems generated tigs of the Poincarenap®, and in particular the evolution of
the unstable vector field'(x). This new measure has been vectors tangent to curve@epresenting the boundary of a
referred to as the-invariant measure. The extension of this fluid—phase-space elemgmidvected by the velocity field.
result to generic area-preserving 2D differentiable dynamic3he condition of area preservation means that the determi-
is given in Ref[14]. nant of the differential is in absolute value equal to 1 for all

This article analyzes in greater detail the structure ance M. In the case of the dynamical system considered, the
properties of thew-invariant measure for generic area- more restrictive condition déb* (x))=1 holds, thus imply-
preserving chaotic differentiable dynamical systems definethg that the differentialsd*(x) for xe M belong to the
by Eg. (1.1, and provides several ways to compute it di- group of unimodular matrices $2,R). By definition, the
rectly from the differential of thenth iterative of the Poin- differential ®™* (x) of the nth iterative of® is given by
caremap of the flow. The statistical and singular properties

— -1
of this measure are addressed in detail since, for a generic O™ () =P (D"H(X))- DF(P(x))- DX (x)
area-preserving map, theinvariant measure possesses mul- n—1
tifractal scaling properties and a sign-singular measure may = H O* (Dl(x)).
be associated with it. To complete the analysis, the connec- j=0

tion between stretching dynamics awdnvariant measure is - : .
thoroughly examined since it provides striking evidence of The definition of stretching can be directly referred to the

the close connections between global geometric invariargcuon .Of the differential. Given a .Vethe(nIMX' the
features and statistical properties. stretching aften steps atx can be defined as'™ (x,v/||v]))

This article is organized as follows. Section I introduces:||(Dn*(x)VH/”V”' This definition for the stretching at a point

the basic definitions and the model systems considered. Seggpends not .only o but also on the orientation of the
nitial vector, i.e., onv/|v]|.

tion 11l develops a succinct but self-contained analysis of thd W fairl | definiti f ch f
hyperbolicity and orientational properties of differentiable € assume a lairly general definition of ¢haos for area-
greserving mappings. A map is said to be chaotic within

area-preserving dynamics. Section IV addresses the geomet-=: . b ifoldC M if. f hxe C and f
fic structure of the unstable foliation as well as its relation®" Ivariant submanitoldC M 1, for eac x::—n* andforany
vector ve TC,, the sequence of vector®"™ (x)v is un-

with the evolution of material lines and defines the . .

w-invariant measure. Section V develops closed-form exPounded in norm, either forwarch{-) or backward @
pressions for a sequence of approximants ofwkievariant ~— — ) in time[15], i.e.,

density, by making use of the invariant orientational proper- sup || d™ (x)v]|=oe. (2.2

ties of chaotic differentiable area-preserving dynamics. Con- —m<n<o

vergence properties are also addressed. Section VI analyzes o N )
the singularity structure of theinvariant measure through This definition is related to the sensitive dependence with
multifractal analysis and through the cancellation exponenf€Spect to the initial conditions typical of chaotic dynamical
of the associated signed measure defined starting from tHyStems, since the distance between the evolution of nearby
field of unstable eigenvectors. Section VII develops the conPOINts [®"(x+&)—®"(x)| for smalle can be expanded to
nection between thev-invariant density and stretching dy- the first order to givel®™ (x)e[~exp(n)[e] with x>0.
namics, thus providing an alternative expression for a se- Throughout this article we consider three representative

multiplicative stretching dynamics. mensions: the standard map, the Duffing oscillator, and a
family of toral diffeomorphisms conjugated to a linear hy-
Il. MODEL SYSTEMS AND BASIC DEFINITIONS perbolic one. The standard map, introduced by ChiriKkisj

is defined on the two-dimensional torus and is given by
Throughout this article, 2D time-periodic area-preserving )

differentiable dynamical systems of the form given by Eq. Xn1=Xn = (k/2m)sin(2my,) mod 1
(1.1) are considered. The velocity fieldtherefore satisfies Yni1=Ynt+Xni1 mod 1.
the conditionv(x,t+ T) =v(x,t), whereT is the period of the . )
perturbation. @ is used to indicate the Poincaneap asso- FOr > «*=0.97(value of the parametex corresponding to
ciated with Eq.(1.1), obtained by sampling the trajectories the breakup of the last KAM torufl7]) there exists one
modulo the periodr. In this way, the dynamics is described egion (at least in the phase space within which the map is

by means of an autonomous dynamical system. chaotic. _ _ _
The Duffing oscillator is another typical prototype of

Xn+1=P(Xn), (2.  Hamiltonian chao$18]. The equations of motion are

2.3
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X=y, where @ indicates direct sum of vector subspaces. The un-
y=x—x3+ ycod wt), (24 stable andstablg vector sub-bundlese¥t, ., (€34 o) are
invariant under the differential, i.e.,
where x=dx/dt and corresponds to a nonlinear oscillator
with a 2-4 potential in the presence of a sinusoidal perturba-

tion. An analytical expression for the Poincanap® is not and possess the dynamic properties of expanéingtract-
available for the Duffing oscillator and it should therefore be, P y prop P 09

computed numerically. The variablesy and time(t or n) lng)_ vectors. In particular, for upiformly hyperbolic systems
entering into Eqs(2.3) and(2.4) are considered to be made (unlform.ly Anosoq,.the expandm.g mee”'es dﬁ gnd Fhe
dimensionless upon a suitable variable rescaling. contracting properties of; are uniform inC, which implies

We also consider another prototype of chaotic dynamicdNat there exist constantsb,c,d>0 and\>1 such that if
on the two-dimensional toru® 2. Given the linear toral au- Vu€ & andvse & then
tomorphismB(x) =Bx mod 1, expressed by the integer-value _ _
matte B [1] @™ Goval=an vl (@ "> (vl <bA v,

(3.3

11 _ _
_ I(@™M)* O)vd[=eAvgll, ([P (x)vel|<bA™"v4].
5 (1 2)’ @9 (3.4)

(D*(X)|£UXZ€EI>(X) d (D*(X)|5>S<:g<sb(x) ' (3'2)

and a family area-preserving diffeomorphiginof the torus, Hyperbolic theory has been generalized by PE2ih23 to a
a family of dynamical systemé can be constructed, topo- More general class of systems referred to as nonuniformly

logically conjugate with3, hyperbolic, for which the stable-unstable splitting E(s1)
and (3.2 hold, while Eqgs(3.3) and(3.4) for the expansion-
d=H Lo BH, (2.69  contraction rates are reformulated in a weaker nonuniform

(position-dependeptway. A succinct review of Pesin’s

where- indicates composition. SincB is globally chaotic ~theory can be found in Ref24]. _ _

within 72 (and is indeed a classical example of a uniformly ~ There is a close relation between chaotic behavior as de-
hyperbolic system on a two-dimensional manifpi®,20— ~ fined by Eq.(2.2) and hyperbolicity. Equationi2.2) is the
also see Sec. Il) ® also possesses the same properties. ToPasic condition defining a quasi-Anosov diffeomorphism on
pological conjugacy implies that the trajectories Bfare @ submanifoldC; [15]. Indeed, Mae has proved that, for

mapped onto the trajectories @f so that two-dimensional compact submanifolds, the property ex-
pressed by Eq(2.2) implies that the diffeomorphisnd is
P'=H"LoBH. (2.7 also Anoso\15], and therefor€; admits a hyperbolic struc-

ture invariant under®. This property is strictly valid for

This class of systems has been extensively investigated #Wo-dimensional manifolds, while in three or more dimen-
Refs.[13, 21] and is particularly suitable for analytical in- sions the situation is more complekl5]. For two-
vestigation since closed-form expressions for its trajectorie§imensional systems, however, the Naheorem implies
can be easily obtained due to the linearitytfAs a candi- that chaotic area-preserving diffeomorphisms are hyperbolic
date forH, the standard map defined by E&.3 may be once restricted to an invariant chaotic region, although hy-
chosen. perbolicity cannot be extended over all the phase space. This
The family of toral diffeomorphisms Ed2.6) is particu-  result is of fundamental importance in the study of chaotic
larly interesting for the purposes of this article for two main dynamical systems restricted to the chaotic regfnich
reasons(1) a closed-form expression for the measure is turns out to be the most important case in the study of cha-
available[13] and (2) their w measures possess basic differ- Otic systems and of stretching dynamit®cause it enables
ences with respect to the corresponding measures defined fé¢ t0 apply the powerful apparatus of hyperbolic theory to
maps associated with physically realizable Hamiltonian sysPhysically interesting problems associated with Poincare

tems such as the Duffing oscillator and the standard (se@ Maps of Hamiltonian systems or with models of 2D incom-
Secs. VI and VI). pressible flows. The result obtained by Téawolds for com-

pact submanifolds. In cases where compactness is lost, the
splitting of the tangent space expressed by E§sl) and

(3.2 still holds, but the bounds for the rate of expansion and
contraction along the unstable and stable vector sub-bundles
remain an open problem. For the purposes of the present
article, this result is sufficient to constitute the fundamental
starting point for the construction of a geometric invariant
theory.

Ill. HYPERBOLICITY AND ORIENTATIONAL
PROPERTIES OF DIFFERENTIABLE DYNAMICS

Hyperbolicity is the key concept applied to infer the glo-
bal geometric features of differentiable dynaniit8,20,23.
Essentially, a diffeomorphic mapb is hyperbolic (or
Anosow on an invariant submanifold if it !nduceg a split- The relationships between chaotic behavior and hyperbo-
ting of the tangent spackCy at anyx belonging taC into two sty are referred to by some authdi2s] as Ruelle’s chaotic
vector subspaces, (the unstable or dilating subspacnd  ypothesis[26], which has been interpreted by Gallavotti
& (the stable or contracting subspace and Cohen as follows: “a chaotic mechanical system can be

regarded for practical purposes as a topological mixing sys-
TC=&DE, (3.)  tem”[27], i.e., as a mixing Anosov system. Though related
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primarily to the analysis of dissipative dynamics with many Consider a generic point, e C, and the solutiox,,(p;X,)
degrees of freedom and aimed at the analysis of their Sinabf Eq. (4.1) for pe[0,p;] passing as initial conditionp(
Ruelle-BowenSRB) measure$29], the observation put for-  =0) throughx,. This solution defines a curve ang (p;)
ward by Gallavotti can by applied to 2D differentiable area-g, - Similarly, by exchanging with —p and integorating
preserving systems. Borrowing a highlighting analogy due tq,, 1, o to —p,, it is possible to define a new curve arc

Gallavo_tti [27]’. we can state that h_y perbolic_ity for 2D area- v, (P1). These two curve arcs can be joined together to form
preserving differentiable dynamics provides a model-"%""

independent theoretical framework to describe and unde@ Single curve arcwﬂo(p1)=y{o(pl)uﬁo(pl) passing
stand their global geometric and measure-theoreticahroughx,. By definitionwgo(pl) is continuous and differ-

properties(narpely, thew measure discussed in Sec)IMst  entiaple atx, and may be referred to as a local unstable leaf
as Boltzmann’s ergodic hypothesis led to the success of equigtx . An important property of the local unstable leaves of
librium statistical mechuamcs. . . . thew system is their invariance with respectdo the image

In 2D systems both?x_ and&, are_one-dlmensmnal VeCtor @ (w, (p;)) of wy (p;) through® is a local unstable leaf,
subspaces. The numerical evaluation of a vector basis for m['ﬁe S(OJIution of EC(I)(4 1) passing througi®(x,). This result

. . . o)-

unstable vector subspag’ can be obtained by enforcing giomg from the invariance of the unstable sub-bundle with
the concept of asymptotic d!rectlonallliys], by cons_|der|ng respect to the differentiab*. Because of the expanding
the sequence of unstable eigenvec®j) of the differen- properties of* along the unstable sub-bundle, a local un-

tial @™ (d~"(x)) stable Ieai/le‘o(xo) for p;— o becomes unbounded in length

n% (A —n Ul — u and space filling o in the sense that it is dense 6nAs a
PP H0)&n(X) = @n(X)&n(x). @5 result, it is possible to define a global unstable leaf at a

Indeed, if a diffeomorphism is hyperbolic it then the se- gengrlc pointx, € és .the limit Ofwxo(pl) for pl_)?c’ or
quence of eigenvectore’(x) eventually exists[30] with eqw\_/alently as trl}e limit fon— o of the sequence of mtegral
|wn(X)|— and convergegin direction to a limit eigenvec-  Manifolds {&"(wg,-n(, ,(P1))}. We shall use the notation

tor €/(x) spanning&,'. The same property holds for the W‘X‘0 to indicate such a global unstable leaf passing through

stable vector sub-bundle by consideriftg * instead of®,  x . The family of all the distinct global unstable leaves for
thus obtaining the bas{®*(x)}. An alternative way of com- x_c¢ is referred to as the invariant unstable foliatigh
puting €'(x) makes use of the homeomorphism between:{w)tg Y ccof @inC.
SL(2,R) and real-valued Moius transformgas discussed in 0" 0. e - - .
the Appendix. In partlcular, ifxp is a hyL!oerbollc fixedperiodig point of

The invariant hyperbolic structure makes it possible toq)’ the integral mamfold/vxp(pl) corresponds to the local
decouple the stretching dynamics in terms of a strictly mul-unstable manifold/Vj,.(x,) of x, defined in dynamical sys-
tiplicative process. For two-dimensional systems, the elongatem theory{18],
tion exponent aften iterations at poink can be defined as u B

Wioe={xe U [P "(X) =X, as n—»

an(x):m)\ém(x):|n||<pn*(x)eU(X)||, (3.6) and @ "(x)eU, V n=0}, (4.2

where{V(x) defines the elongation. Contrary to the defini-and the global unstable manifold“(x,), defined as the
tion of the stretchinga. (™ (x,v/||v||), the elongation\(""(x) ~ union of the images oWV,(x;) throughd®",

is, strictly speaking, a field, i.e., depends exclusively on the " U

position x (for fixed n). This definition of elongations has WHXp)= U POV joc(Xp)), 4.3
been already discussed by several auti@&31], and is n=0

applied in Sec. VII. coincides with the leafv; of the unstable foliation.

p
Since FY is transitive inC (i.e., each leaf of the unstable
IV. GEOMETRIC STRUCTURE OF THE UNSTABLE foliation fills C densely, and since two leaves passing in a
FOLIATION neighborhood of a point possess close tangent vect@re-

Given the unstable vector sub-bundle’(x)},.c, it is ~ cause the vector subspaded'} are continuous almost ev-

possib|e to define the dynamica| System generated»'w’ el’yWhel‘e InC), a genel’i.c -Ieaf. of the Unstable. foliation is
representative of the foliation itself. More precisely, a class

dx,(p) of equivalence of the leaves gt can be defined in such a
g =e"(Xu(P)), (4.1 way that all the leaves belong to the same equivalence class.
P The equivalence between leaves of the unstable foliation is

ing f _0)= c h graphically depicted in Figs.(& and Xb) in the case of the
starting fromx,,(p= )_XPE ~In Eq..(4.:!.)t e parametep  giangard map K=2). Figure 1a) shows a portion ofwy
plays the role of a generic parametrization of the trajectories 0

generated by the unstable sub-bundle. Equaiioh makes ~ Starting from a randomly chosen poirgeC (the chaotic
sense since by hypothesi4x,(p)) is continuous along the €gion is dottefd while Fig. 1b) shows a portion of the
trajectories, and the corresponding dynamical system is reunstable manifold of the hyperbolic fixed poirt=(0,3).
ferred to as thev system associated with the Poincarap® For the purposes of a global geometric theory of 2D differ-
[33]. entiable area-preserving dynamics, it is immaterial to ana-
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(this point is analyzed thoroughly in Sec),\it follows from
the continuity equation that the density satisfies the equa-
tion

V- [pu(X)€"(x)]=0. (4.9

In a similar way, if¢‘F’)V(x) is the phase flow associated with
Eq. (4.1), thew measure satisfies the equation

pw(B)=uu((¢5) H(B)), (4.5

for any measurable s&CC, i.e., is invariant under the flow

manifold (continuous ling obtained by integrating E@4.1) starting associated _Wi'Fh Eq(4.D. The analysis devgloped for the
from a randomly chosen initial point withid. (b) Portion of the unstable foliation can be extended in a straightforward way

unstable manifold of the fixed poit®, ). The dynamical system is {0 the stable foliation/> by simply considering the integral

the standard map E@2.3) with x=2. manifolds associated with the stable vector sub-bundle
{€(9}.

lyze the properties of a ge_neric leaf of the u_nstable foliatiqn In the case of hyperbolic systems given by Egs5) and

or the global unstable manifold of some particular hyperbolic(2.6), the unstable vector sub-bundké'(x)} can be obtained

periodic point since both the manifolds contain exactly theanalytically [13], and is given bye"(x)=[H*(x)] e,
same amount of information on the invariant dynamics andyheres" is the unstable eigenvector of the matBx

global geometry of the system. This observation is useful

especially in the analysis of fluid mixing systems since it [Be'=\ e" N =(3+5)/2"= (¥ ,e%)=(1 ,—1)'].
indicates that a generic leaf gf (and not only the unstable

manifold associated with some particular hyperbolic periodidVhere the diffeomorphisri is given by the standard map,
pointg is the fundamental template for the asymptotic evo-the integral manifolds of the unstable foliation can be ex-
lution of material lines and partially mixed structures ad-pressed in closed form. Fovy_ the integration of Eq(4.1)

FIG. 1. (a) Chaotic regiorC (dotted and a portion of an integral

vected by the flow34]. yields
As can be argued from visual inspection of Fig. 1, the
spatial distributions of the unstable leaves within a chaotic ei(y—Yo) Kk . _
region is highly nonhomogeneous. This spatial heterogeneity X=Xo* W+ Z[SIH(ZWV)—SIH(ZWYO)]}-

has been already observed in the evolution of material lines (4.6)
advected by laminar chaotic floyj§] and is of primary rel- '
evance for the quantitative modeling of the interfacial phe-gy enforcing the identityV - {[#* (x)]~1"}=0, it readily

nomena controlled by the structure of material lit@slosed  follows from Eq.(4.4) that thew densityp,(X) exists and is
material line is the boundary of a fluid elememA typical  given by

example of such problems is reaction-diffusion kinetics in

laminar chaotic flows in the limit of large Thiele modiilie., pu(X)=C[[H* (x)]" ey, 4.7
for very fast reactionsand large Pelet numbergi.e., negli-
gible diffusion [35]. whereC is the normalization constant. As a consequence, the

For the reason stated above, it is interesting to investigater measure for hyperbolic diffeomorphisms of the tof8g]
the statistical and measure-theoretical properties of thés absolutely continuous with respect to the Lebesgue mea-
leaves of the unstable foliation both within the framework ofsure. The analysis of the structure of theénvariant measure
a global theory of dynamical systems and for its applicationgor generic 2D chaotic area-preserving systems is developed
to fluid mixing and mechanical models. Let us frame thisin the following sections.
project in a quantitative way. Henceforth we shall regard
e'(x) in Eq. (4.1) as unit vectorgi.e., [|e'(x)[|=1), so that V. STATIONARY MEASURE OF THE UNSTABLE
the parametep corresponds to the curvilinear abscissa pa- FOLIATION
rametrizing the unstable leaves ofY. The measure- ) i i
theoretical(space-filling properties ofF! can be addressed [N order to determine an analytic expression for the
by analyzing the inter-material length densjiy(x) (since W—|nva_r|ant_m_easure of_a generic 2D area-preserving diffeo-
2D systems are considejed.e., the normalized pointwise MOrphism it is convenient to apply a constructive process
length distribution of a generic leaf Y. In laminar chaotic f_ollowmg the advection of a material I|ne_ iteration by itera-
flows this quantity has a straightforward physical meaning adion- Let yo be a curve ar¢such thatyoNC is the union of a
it provides a pointwise description of the multiplicative for- discrete number of curve arcs of nonzero lepgind y;,
mation of striations due to the mixing protocol. Le, be = ®"(¥0) its image throughb™. The statistical properties of
the associated measure, referred to aswifievariant mea- ¥n €an be addressed by analyzing the intermaterial length
sure(or simply as thav-measurg Because of the invariance densityp{’(x) at iterationn.
of F* with respect tad, it follows that the density,,(x) (if The densityp{’(x) and the associated measwf’ can
it existy and the measurg,, are respectively the invariant be obtained numerically by tracking the curvgs and by
density and measure associated with the dynamical systehox counting the length fraction falling within each box of
Eq. (4.1). Under the assumption of the existence of a densitythe covering ofC. By invoking the asymptotic equivalence
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30

a’ for n—), the eigenvectoe)(x)=(eh,eh,)" can be ob-
" (z,€) 5 | tained from the solution of the equation
10 ~Aeh +APen,=0 (5.2
0 or, equivalently,
(o] 0.2 0.4 0.6 0.8 r 1
* ' b Alel — AlDel =0 (5.3
(n) 21 *n,1 11 *n,2 . .
Py (.’L‘,E) 20
A non-normalized basis faf, can therefore be approximated
10 by
© [¢] 0.2 - 014 0i6 “ 0.8 r 1 éz(x) = (Ag.g) ’A(Zg))t (54)
30 T T T T T
(4
ui (z, €) o or, equivalently, by
&00 = (A7 A" (5.5
10
The reason why two different approximations, E@s4) and
%5 0.2 o 0.6 08 1 1 (5.5, are obtained is related to hyperbolicity. The differential

. ) AM =™ (d~"(x)) possesses entries which diverge expo-

FIG. 2. Intersection box measugé;’(x,z) vsx aty= 3 for the nentially asn increases and is subjected to the condition
standard map ak=2 (e=5%x10"%). (a) Filament evolution,n det@\(n))zl_ Therefore, ifm,~expM\) (A>0) indicates
=12, (b) filament evolutionn= 14, (c) generic leaf of the invariant the maximum over the entries 8", the normalized matrix

unstable foliationF". ~ . . .
AM=AM/m admits a determinant exponentially decreas-

between advected lines and the leaves of the unstable folid?9 tg)zero. ;I;E"S 'nt"p"ef that (t:;e two (ﬁ)olum? Veth#l
tion FY, the sequence of measurgd? converges in the - (A1r/Mn A M), & ,=(A1z/My Ay /m,)"  forming
limit of n— o towards a stationary measysg, (wmeasurg ~ A"=(€h1.€,,) become colinear with each other asin-
which is the invariant measure of the dynamical system, Eqgcreases, and two different expressions i), Egs.(5.4)
(4.1), and the stationary pointwise length distribution of aand(5.5), are available.

generic material line stretched and folded by the Poincare By differentiating the identityd"(® ~"(x))=x, it follows
map ®. This phenomenon is shown in Fig. 2 by taking athat

section alongy=y. and plotting the intersection box mea-

sures u{W(x;,&) representing the fraction of intersections AN =™ (@ "(x)=[(>"(x))*]7, (5.6)
falling in an interval[ x; ,x; + &) alongy, for a filament evo- u

lution (n=12,14) and for a generic leaf of the unstable fo-2Nd the vectog;(x) can therefore be expressed as
liation F¥. These two measures have been obtained from a
box counting of the intersections within the intervals of a
given partition ofy=y.. The dynamical system considered
is the standard map Eq2.3) at k=2, y.=3. These box . . )
measures are normalized Bsu(V(x;,e)e=1. Apart from  Wherex=(xy,xz)" is a_r?arteaa'n coordinate system for the
minor effects due to tangencies between filament evolutiohase manifold and; "(x) the ith component of the map
(invariant manifoldswith y=y., the box counting of inter- @ ". As can be observed from E¢5.7), the functionsd; "
sections is equivalent to the box counting of the length con{i=1,2) play the role of asymptotic invariant “stream func-
tent. tions,” determining through Eq4.1) the invariant proper-

In order to obtain an analytical approximation for ties of the unstable manifolds @b in the limit for n—co.
p{M(x) at iterationn, it is convenien{and conceptually more The choice ofi=1,2 in Eq.(5.7) determines two different
elegant to analyze the measure-theoretical properties of Ega@pproximations foré(x) which return a vector colinear to
(4.1) by enforcing asymptotic directionality, E¢3.5). This  €"(x) in the limit of n—cc and are therefore fully equivalent.
will provide a deeper insight into the functional form of  Equation(5.7) is the starting point in order to determine
p{M(x) than the purely numerical tracking and box-countingan analytic expression f@{"(x). Indeed, from Eq(5.7) it
of a material line. Let us sed(M=d"™ (@ "(x))=(A{Y). IS easy to see that
For sufficiently largen, within the chaotic regio®

Ib;"(x) 9 ")\
Xy, | 9Xy =

di(x)=| — 1,2, (5.7

2d — 28—
_ PR ()
910X IXpdXy

V.-&ix)= 0. (5.8

D™ (@ "(x)] =AY+ A =\a+ LA p=Na+o0(n),
xeC, (5.) By definition, the nth approximation p{"(x) for the
w-invariant density fulfills the continuity equation

whereo(n) is a quantity tendingexponentially to zero for () or ol
n—oo. Within this approximatioriwhich proves to be exact V-[py (X)&,(X)]=0, (5.9
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20 ' ' ' ' a and p{" is given by Eq.(5.11), for the standard map Eq.
o) (z, €) (2.3 atk=2,y.,=3 andn=9,10,11.

20 The analysis of the results shown in Fig. 3 and its com-

1o parison with Fig. 2 make it possible to draw the following

conclusions(a) The sequence of approximant§" obtained
o Mo P through Eq.(5.12),
(] 0.2 0.4 0.6 0.8 r 1

30 b
) (x, ) wM(A)= J pM(x)dx, (5.13

20 A

towards a spatially nonuniform stationary measug.This
20 - - - P measure coincides with the box measure obtained from the
B (z, ) box counting of the length of a generic material line evolved
20 for a sufficiently long time, or equivalently from the box
counting of the pointwise length distribution of a leaf#f.
10 Indeed, Egs.(5.10 and (5.11) yield two different se-
quences of approximants £€1,2) for p{" . Figures 4a),
o 0.2 0.4 0.6 08 g 1 4(c), and 4e) and Figs. 4b), 4(d), and 4f) show, respec-
FIG. 3. Normalized sectional box measufe&(x,s) vsx alon tively, the two sequences of sectional box measures
the x axis (k=2) aty,= % (e=5x10°%). (a) Ifig (b)) n=10. (C)g ,&\(A?)(x,s) at y=0.4_ for the §tandard magp=2, evaluated
n=11. from Eq.(5.11) for i=1 andi=2. It may be observed that
the two approximations both converge towards the same sta-
wheree!(x) are colinear with&!(x) and possess unit norm. tionary measure although the convergence rate may be dif-
Equation(5.9) is a continuity equation analogous to £4.4)  ferent. S .
with py,(x) replaced by{™(x) ande’(x) replaced by (x). Although asymptotic dlrectlonghty, I_Eq3.5), h(_)lds only
Since €'(x) = &'(x)/|&(x)|, it follows from Eq. (5.8) that fqr p0|nts(>r$) belonging to a chaotic region, the. fmal expres-
V- [||&(x)[[e"(x)]=0, and therefore the comparison with Eq. sion for p,”(X) Eq. (5.11) can be defined in principle at all

; ; ; Ny - the points of the phase manifold. This is indeed a very useful
(5.9 yields an analytical expression fropﬁv (x): final result in that it implies na priori knowledge of the

10 |
‘ L i L ll h ““ whereA is a Borelian set, converges with sufficient rapidity
(o]

(o)

p'M(x) = constx [ &(x)[|+ o(n) = p™ (x) = const location of the chaotic region, and deserves furttuner discus-
sion. If C belongs to a chaotic region, the nofi¥ ®; "(x)|
X[V "(x)|+o(n) i=1,2 (5.10  grows exponentially witm, while if it does not, the sequence

[V "(x)| grows more slowly than any exponential and the
resultingw density becomes zero at the point forc. This
phenomenon is depicted in Fig. 5, which shows the log-
normal plot of the sectional box-measures evaluateg.at

or, equivalently,

pw’ ()= constpyy’ (x) +o(n),

n\ 2 DN 2 112 =1 for the standard map at=2 (n=9,10,11). For this
M (x)= <_' +<_') i=1,2. particular parameter value, the standard map exhibitg at
X1 gniy \ OX2 ] gongy =1 alarge central region of quasiperiodic[tyee Fig. 1a)]

(5.1)  and consequently theth order approximation of thes mea-
sure tends to zero with an exponential rate at all the points in

Equation(5.11) provides a sequence of analytical approxi- this region.

mations forp,,(x) from which the statistical properties of the
measures.{" generated from these densities and their con- _ _
vergence properties can be addressed. A. Uniformly hyperbolic systems and convergence oﬂ\(,vn)

For eachn, the densitie$)\(,;‘)(x) are differentiable despite This section analyzes the convergence properties of the
the fact that in the limit fon—c the sequence of measures sequence of approximangs{" derived from Eq.(5.11) for
,uf,{‘) converges towards a stationary singular measure, as withew measure. To this end, toral diffeomorphisms conjugate
be discussed in detail in the next section. This phenomenowith a linear map Eq(2.6) provide a useful model system
is illustrated in Fig. 3 by considering the sectional box measince an analytic expression for the-invariant density
sures,&\(,y)(xi ,€) pw(X), EQ.(4.2), is available for this class of systems.

For toral diffeomorphism Eq(2.6), the matrix A" de-

Xjte . . .
2 (x ,s)=C(”)f oM (£y o), (5.2 fined in Sec. V attains the form

" AM=0™[D"(x)]=[H* )] 'B(H™H* (V) ]y=8-mux

whereC™ is a normalization constant such that (5.14
N btained b ki f the identity E¢p.6). Let

Z AM(x, 8)s=1, obtained by making use of the identity Ep.6). Let us

indicate withh;;, k;;, and Bi”j , respectively, the entries of
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FIG. 4. Normalized sectional box measuie&’(x,£) vs x along thex axis (k=2) aty.=0.4 (s=5x10"*) evaluated from the two
different approximations oﬁw)(x), Eqg.(5.11. (@ n=5,i=1, (b) n=5,i=2,(c) n=7,i=1,(d) n=7,i=2, (e) n=10,i=1, (f) n=10,

i=2.

[H* ()14 [(H™)*(¥)ly=s-mux, @nd B". By applying
Eq. (5.11), the nth order approximation for the density
piM(x) attains the form
P =LA+ (AT =12, (519
where
ALY =h11(BY Ky + B ko) + hio( BSiKyi + B5kKy),

A = hyy(BY Ky + BlKyi) + oo Bk + Blky), i :(112.@
51

It therefore follows that

P = BaiKgi+ BogKai| V(13E™ 4102+ (hy ™+ hyp)?,
(5.17
where[see the Appendix, EQAB)]

_ Biikai/kgi+ B3, 3_T

(M= = & e
BOiKyi/kyi+B3, &b

+o(n).

(5.18

By substituting Eq(5.18 into Eq. (5.17), it follows that

P (0)=Cg(® "())pu()+0(n),  (5.19

where pw=[(h11£1+h1,£5) %+ (hpsef+hpeh)?]H?

=|[H*(x)] &Y is the unnormalizeds-invariant density
Eq. (4.7), C a normalization constant, agd® ~"(x)) a func-
tion of ® ~"(x) given by

|B2:K1i + BoKyil

B

g(@ "(x)= (5.20

It is clear to see that the right-hand side of E§.20 is a
function solely of ®~"(x) since k;; are the entries of
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0.0 1.0

0.2

FIG. 5. Log-normal plot of thg{"(x,) vs x along thex axis
(k=2) aty.= % (e=5%10*) for n=9,10,11. The arrow indicates
increasing values afi.

(H™1* (Y)y=rmo =[H* (@7 "(x))] %, and the other quan-
tities entering into the definition af are constant.

Equation(5.19 implies thatp{"(x) is the product of the
smooth, slowly varying functiorp,,(x) and of the highly
spatially fluctuating terng(® ~"(x)). As a consequence of
this, the sequence of densitip%“)(x) does not converge to
the invariantw density Eq.(4.7), as shown in Fig. 6 visual-
izing the pointwise behavior g\ (x) along the circumfer-
encex=13, O<y<1 atn=10 and forH given by the stan-
dard map withk=6.

Although the sequence g¢f’(x) does not converge to-
wards thew-invariant densityp,,(X), it is straightforward to
show that convergence holds in measure. To prove this, |
us integratep{" (x) over a ballB,(&) of radiuse centered at
x. By applying Eq(5.19 and enforcing the mean value theo-
rem (for continuous functionsit follows that

LD (By(8))=Cp(x,) fB( 9@ (y)dy+o(n)

o g(y)dy+o(n),
(By())
(5.20)

wherex, is a point withinB,(e). Sinced is a mixing andg
a continuous function, it follows th4B86]

=Cﬁw(X8)J¢

im [ gmdy-c@e)e). (522
n—od ® (Bx(3>)

where £(A) is the Lebesgue measure of the et 72 and
(g) the ergodic average of the functignBy substituting this
result into Eq.(5.2)), it follows that the average density
—tn)

pw (X&)

1
—tn) _ (n)
pw (X,&) BCATS) fBX(E)pW (y),

dy=pw(x)+0(n)+0O(e), (5.23
tends towards the~invariant density fon—cc and for small
. The result expressed by E&.23 holds in general for any
measurable set centered »at This shows that the density
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04 06 038

Y

.0 0i2 1.0

FIG. 6. (a) Pointwise behavior op{"(x) evaluated from Eq.
(5.17) along the circumference= %, 0<y<1 for n=10 and forH
given by the standard map<E6). (b) Comparison ofp{"(x,e)
Eq. (5.23 at n=10 numerically evaluated frorpf,&‘)(x) illustrated
in Fig. 6(@ and the theoretical expression foy(x), Eq. (4.7).

sures or the sectional box measures also convergen for
—oo if the partition consists of equal boxes. Figure 6 illus-
trates this result and shows the excellent agreement between
piW(x,e) evaluated from the data of Fig.(# and the
w-invariant density Eq(4.7).

B. Local self-similarity of the w density

This subsection analyzes the local self-similarity of the
sequence{"(x) in a neighborhood of a hyperboliperi-
dic) point of ®. The starting point is the definition Eg.

E\( .10, which can be used in order to obtain a recursive re-

lation for p{’. To this end, observe that the mati"
satisfies the relation

AMTD(x)=D* (DY x)AM(D H(x),  (5.29

which follows immediately from the definition of
AM=[(®™M* ()] =0 (@ "(x)=TI]_;&* (® 7)(x)).

Consequently, the vecto@(x) defined by Eqgs(5.4) and
(5.5 satisfy the equation

& 1(0) =P (@1 (X)E(P (X)), (5.29

and the resulting density\"(x) = ||&!(x)|| satisfies the recur-
sive equation

pu"TH(X) = D* (@~ H(x)el(@ 1) [[&x) |
=[|®* (D~ L(x))en (@ ~1(x)]|pi (@ (X)),
(5.26

where €i(x) is the normalized unit vector colinear with
& (x). Therefore, fory belonging to ane neighborhood
U.(xp) of a hyperbolic fixed point, and for sufficiently
large values oh [such thate(x) =€"(x)], we obtain

P V=N TO T 0 tY)] (5.2

where\" is the unstable eigenvalue df*(x,;) and|| indi-
cates the absolute value. Equati@27) is derived from Eq.

pf,{‘)(x) converges on average, averaged over an arbitrar{s.26 by enforcing the continuity of the differentidh* (x).
measurable set, towards the absolutely continuous invariafithe Taylor expansion ob‘l(xp+y) in the neighborhood of

densityp,(X) Eq. (4.6). Because of Eq5.23), the box mea-

the fixed pointx, yields
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FIG. 7. p{M(&)/\D vs £=\Ny® for different orientations and

. . .y o1 FIG. 8. InZ}/(g—1) vs g for the sectional box measures
|(tirj1t2|<))ns near the hyperbolic fixed poif®, 3) of the standard map 20 (x,£) of the standard mapk=2) aty,=0.4 andn=11. The

arrow indicates increasing values @f

~(n+1) x5 -1
P (XptY)=INul oy o [P TH(X)TY). (528 gcal behavior on the dense subset of its hyperbolic periodic
. L . points. This phenomenon for the measure-theoretical proper-
Equation(5.28 implies that, ifylle*(x;) then ties of the unstable foliation is similar to the scaling proper-
SMED e v =05 ™ (x4 N V). 5.2 ties of the invariant measur¢the SRB measujdor chaotic
POV = Nl pu” O M) ®29 dissipative attractors, which can be viewed as organized
In the more general case, under the condition yhiattrans- ~ around the structure of the periodic poi@&7]. A further

versal toe(x,), we obtain discussion of this analogy is developed in Sec. VII. Since
each hyperbolic periodic point is characterized by a different
5<Wn+1>(xp+y)z|)\u|nfxp(xp+{[q>—1(xp)]*}“y)_ scaling factor(eigenvalug, it is to be expected that the re-

(5.30 sulting w-invariant measure may exhibit highly singular and
indeed multifractal features. This topic is examined in the
Since x, is a fixed (periodig point, the application of next section.
{[(I)‘l(xp)]*}“ to y yields a vector colinear te*(x,) in the

limit of n—o°, i.e., VI. SINGULAR PROPERTIES OF THE w-INVARIANT

([ 206 11y = (A ) "Y3€%(Xp) + (Ay) ~"yUe(x,) MEASURE
This section develops a numerical analysis of the singular
~ Ny ,S
=)y (), (5.39 structure of thew-invariant measure by considering the
wherey®,y! are the components of along the stable and Structure of itsf(a) spectrum and its sign-singularity asso-

unstable eigenspaces ®f (x,). By collecting together Egs. ciated th(':])the orientational properties of the vectgfé)
(5.30 and(5.31), it follows that fory e U (x,) defining p,,”(x) through Eq.(5.10.

f’w)(xp+Y)=|)\u|nfxp(7\ﬂys)+0(n)1 (5.32 A. Multifractal properties

wheref, (x) is an invariant function independentmindy;, In order to investigate the_ singularity properties of the
is th P | h . ble direcii measure, the standard multifractal approach is appBed
is the component of along the asymptotic stable direction v, s analyzing the scaling properties of the moments of

spanned bye*(xp) given by (* (x,)€%(X)) =X, "€(Xp)).  the normalized sectional box-measures
Equation (5.32 is the final result expressing the self-
similarity of the approximants{"(x) in the neighborhood .
of a hyperbolic fixed point. A numerical validation of Eq. Z [p{"(e1) ]9~ d~ 1P, (6.9
(5.32 is given in Fig. 7, which shows the graph pf" =
X (HIN] vs €= \])y* for different values oh, and for differ-

Nk

(n) - imati
) ) St N where p;"’ (&) is the nth order approximation of the sec-
ent orientations of near the hyperbolic fixed poiri0,) of 57 hox measure of thigh interval of the partition of size

the standard mapx(=2). The result derived for hyperbolic Th IVSi f idering=2-X Kk
fixed points can be extended in straightforward fashion toszki € air51a ysis was performed by consideriig- ’

hyperbolic periodic points of prime periad, which are the

fixed points of thed™(x). Figure 8 shows the behavior of the functior#]

_ysN () 1/(q—1 ot
The self-similarity in the neighborhood of periodic points ~12i-1[P" (801~ for some characteristic values qf

indicates that the structure of theinvariant measure can be in the interval[—10, 10, the slope of which in a log-log plot
regarded as organized around the skeleton of the hyperbolquals the generalized dimensi@{q) of order g. These
periodic points ofd, which are dense within the chaotic data refer tan=11, and to a sectional box measure evaluated
region C. The global structure op,,(x) is therefore con- aty.=0.4 for the standard map at=2. As can be observed,
strained by the local scaling of thve densities expressed by a neat scaling behavidin the whole range of)) exists over
Eqg. (5.32. In principle the scaling properties of the more than three decades of. Similar results were also
w-invariant measure i€ can be derived starting from its obtained for the different values of and different sections
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FIG. 9. Spectrum of generalized dimensions of the sectional box
measuresi.{"(x,&) for the standard mapi=2). (@ y.=3, n

FIG. 11. Comparison betweeb continuous ling and
=10,11,12,(b) y.=0.4,n=10,11,12. par W (@ ( inuous lin

D(qg)—1 (dotg for positive values ofj in the case of the standard
tk=2.

(y.) considered. These results are summarized in Fig. 9rjnapaK

which shows the spectrum of generalized dimendix(y) which are not conjugate to a linear hyperbolic transforma-

for y.=0.4 [Fig. 9b)] and for y.=3 [Fig. 9a)] at n tion, although different systems may show rather different

=10,11,12. Thed(q) curves for different values af col- ~ Spectra of generalized dimensions. A typical case is given by
lapse onto a unique invariant curve, thus giving anothethe Poincaresection of the Dufflng oscillator Ed2.4). Fig- _
quantitative confirmation thaith order sectional box mea- Ures 128 and 12b) shows a sectional box measure for this
sures converge towards an invariant measiae already SyStem. A distribution of localized singularities can be ob-
shown in qualitative terms in Fig.)2The comparison of Se€rved, Figs. 1) and 12b), although a log-normal plot
Figs. 9a) and 9b) reveals that thd-ﬁ(q) spectra for different [Fig. 12(.(:)] un_vells a ”Ch. singular .stru_cture. Its spectru_m of
values ofn collapse onto a unique invariant spectrum Whichgener_allzed dlmer_13|ons_|s show.n in Fig. 13. The beha\{lor for
is the same for all the different, sections analyzed, thus negativeq values is particularly interesting. From the visual

confirming that the simpler analysis of the multifractal prop-m":’peCtIon of the sectional box measures the spectrum of

erties of sectional box measures provides an insight into th eneralized dimensions may be expected to be sensitive to
. . P 9 e presence of localized zeroes. This observation would ex-
singularity structure of they measure as a whole. THéa)

t ding to thix(q) h Figs. (@) plain the sudden elbow obtained for negative valuesy of
spectra corresponding to q) curves shown Figs. B oo Je
and gb) are illustrated in Fig. 10. near—1. The solid line in Fig. 13 shows tHe(q) spectrum

; ; ; ; n__.a
The observation that the singularity properties of the_(for ne_gatlveq) assoc_|ate(_j W'th Ioce_1||zed z_erc_)p.§, © Of.
ntensity = 1.88, which fits in well in qualitative terms with

w-invariant measure can be inferred from the analysis of sedh b 4 behavior f tiwe This ob tion is of
tional box-measures is further supported by the numerical '€ OPserved behavior for negatiye This observation is o

observation that there exists a simple relationship betweefi?US€ grounded on purely numerical data.

the spectrum of generalized dimensioBgq) evaluated ) 8000
from sectional box measures and the spectffg) evalu-  Hw (y,€) 6000 | i
ated from thew-invariant measure defined ghas a whole: 4000 | |
D(q)=D(a)+1, (6.2 2000 | 7
o ! L L] . L
as was to be expected given the meaning of sectional bo: 1 1.5 2 2.5 LA
measures. Figure 11 shows the excellent agreement betweeﬁ(n)(y o 1000 5 ' T '
D(q) and D(q)—1 in the case of the standard map at v
K=2. 500 | .
The singular nature of the~invariant measure seems to
be a general feature of 2D area-preserving diffeomorphism: I |
1 1.5 2 2.5 Yy 3
12— 77T T T 12—
a b
10| 1.0 B 104
0.8 081 1 - .
fle)ost 1 f(@)0s w (Y,€) 10° |
04} 1 0.4 1074 Ak
0.2F 0.2 7 10-8 X

1 1.5 2 25 y 3

0'%.4 ‘ 0:8 ‘ 1;2 ‘ 1t6 I 2.0 0'%.4 ‘ OI.8 ‘ 1I.2 ‘ 1‘.6 2.0

¢ * FIG. 12. i{"(y,&) vsye[1,3] atx=1 andn=8 for the Poin-

FIG. 10. f(«) spectrum of the sectional box measures caresection of the Duffing oscillator Eq2.4) (y=0.75, w=1.0).

a{M(x,e) for the standard map=2). (a) y.=0.5,n=10,11,12, (a) y-axis range[0, 8000, (b) y-axis range[0, 1000, (c) Log-
(b) y.=0.4,n=10,11,12. normal plot.
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FIG. 13. Spectrum of generalized dimensif)l(lq) for the sec-
tional box-measures shown in Fig. 1Ruffing oscillatoy, with the
corresponding error bars. The bold line, for negative valuesief 10¢

X (T
B(q)=(q— 1) max(q—1),aq} with «=1.88. =il (131

Another remarkable property of th& measure arises 102
from the comparison of the singularity structure associated

with the stable and unstable foliation of the same dynamical 10'F

system. Figure 14 compares tBéq) spectrum(continuous
line) associated with the sectional box measure of the un-

stable foliation §.=0.4, n=11) and theﬁ(q) spectrum 101
(dots associated with the sectional box measures of the
stable foliation aty=0.4 forn=10 andn=11 for the stan- . _
dard map ak=2. The spectra of generalized dimensions of FC: 15. (8 Signed measure"(x,&) vs x along the circum-
these two measures coincide, i.e., the stable and unstaﬂ@er(‘nc)eyczo'A' (standard mapx=2 n=12), (b) Log-log plot of
foliation possess the same singularity structure. This phe§i|" ()] vs e for .n:12,(%)3,14. ThPKarrpw indicates increasing
nomenon is a consequence of area preservation in 2D sy$2ues ofn- Line (@ is i1~ e with «,=0.83.

tems. Indeed, ifx, is a hyperbolic fixed point ofb™ (m  values, vis said to be sign singular if it changes sign almost
=1,2,...)with the unstable eigenvalue,, itis also a hy-  everywhere on arbitrarily small lengthscales. For a signed
perbolic fixed point of®~™ with the same unstable eigen- measure, the cancellation exponent may be defined as fol-
value. On the dense subset of hyperbolic periodic points, thiws:

w densities associated with thesystems generated from the

10°

107° 107* 1073 1072 107! 10°
[

vector sub-bundle§€e’(x)}, {€(x)} therefore possess the N> |w(l
. . . : . n2 [v(l)]
same scaling propertiéSec. V B. This observation explains ) i
the numerical result shown in Fig. 14. Ky= “mOSU In(1s) 6.3

where |; denotes thdth interval of ane partition. For a
probability measure and for a signed measure with a smooth
In 1992, Ottet al. [2] introduced the so-called cancella- density x,=0, while x,>0 indicates an oscillation in sign
tion exponent in order to characterize the sign-singular propen arbitrarily small lengthscales, i.e., the sign singularity of

erties of the signed measuf40] associated with the mag- the measure.
netic field in fast magnetic dynamos.ifis a signed measure We analyzed the sign-singular properties of the signed
(a signed measure of a set can take either positive or negativeeasure associated with the normal component ofnthe
order unstable eigenvecto®(x) [defining through Eg.
1.8 (5.10, the w density] along a circumference at=y., 0
<x=1 for the standard map defined on the torus. The geo-

B. Associated sign-singular measure

16 metrical meaning of this signed measure is related to the

14 folding of the invariant unstable manifolds and consequently
12 to the folding dynamics in the evolution of partially mixed
D(q) structures.

Figure 1%a) shows the behavior of("(x;,e) for the
standard map«=2) for n=12 andy.= 0.4, indicating per-
sistent oscillations in sign at all length-scales. The sign sin-
e gular nature of/(" is an asymptotic invariant property. This
246810 phenomenon can be highlighted by considering a log-log

plot =;|»(I;)| vs &, as shown in Fig. 1) for different val-

FIG. 14. Comparison between tii¥(q) spectrum(continuous ~ U€s ofn. The corresponding slopién a log-log plo} yields
line) associated with the sectional box measures of the unstablthe cancellation exponemf,n). The Sequencerfjn) quickly
foliation (y.=0.4,n=11) and theD(q) spectrum(dots associated Mmoves towards a constant value equak{e=0.83, and the
with the sectional box measures of the stable foliatiop.at0.4 for ~ numerical results were obtained by analyzing different sec-
n=10,11 for the standard map at=2. tions, i.e., different values of, .

0
g
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10 figure shows the distance
08f" 12
An={ f [y (x,8) = By (X,£)1dX
0.6
Ay, between the sectional box-measures evaluated starting from

04r Eqg. (5.10, iau(x,e), and from Eq.(7.2 for the samee

] =279 as a function ofn. As expected, the distance, de-
02 creases to zero with, thus supporting the thesis.
0.0 We may conclude that the sequence defined by(E®)
6

starting from the multiplicative cascade of elongations yields
a sequence of approximants for thedensity which con-
FIG. 16. DistanceA, vs n (dots between the sectional box verges in terms of measure. This result is particularly impor-
measures evaluated starting from E§10 and Eq.(7.2. The sys-  tant since it provides a direct connection between the stretch-
tem is the standard mam € 2) ande =29, y,=3. The solid line  ing dynamics and the measure-theoretical properties of the
is the exponential fitting of the data. unstable foliation. This result displays some analogies with
the corresponding expression for the SRB measure of chaotic
VIl. CONNECTION WITH DYNAMIC AND STATISTICAL dissipative systems as a function of stretching along the un-
PROPERTIES stable direction$29,25. This analogy is only formal, since
There is a close relation between twemeasure and the the tWo(SRB andw) measures possess totally different geo-
statistical and pointwise properties characterizing stretching€tric and dynamic meaning. The SRB measure for chaotic
dynamics. Consider again E.26. For sufficiently largen, ~ attractors is simply the ergodic measure remaining invariant

el(x) = e"(x) +o(n) for any xeC. Therefore under the mapb. Its counterpart in 2D area-preserving dy-
|d* (d~1(x))e!(x)| is practically equal to the one-step namics restricted to an invariant chaotic submanifold is sim-

) a1 ply the ergodic measure* associated with the uniform den-
elongationk¢™(®~*(x)) Eq. (3.6), and sity p*(x)=1/L(C) (xeC). Such an invariant measure
ﬁW‘*‘l)(X):[)\él)(q)—l(X))_l_o(n)]ﬁ\(l\?)(x)_ (7.2) makgs it possible to express time averages of continuous
physical observables as ensemble averages of the observ-
This result indicates a connection between stretcligign- ~ ables with respect tp* [38]. Thew-invariant measure is not
gations and the expression for the-invariant density, and an ergodic measure fdp: it is neither invariant unde®, nor
suggests the expression related to the statistical properties of measurable sets trans-
formed by®. Thew measure is a stationary measure asso-
n . . . .
() D -] e (W ciated ex_clgswely Wlth the_ geqmetrlc structure of the un-
Pw —C,Hl A (@TI(X)=CA"(@7"(X), (7.2 stable foliation and is the invariant measiisee Eq.(4.5)]
! for the w system, Eq.(4.1), generated by the normalized
as another candidate for tih approximation op,,(x). Of  unstable vector sub-bund{e’(x)}. _
course, as in the case of the expressions E§L0 and There is another interesting result emerging from the re-
(5.12), Eq. (7.2 may converge only in measure, i.e., consid-lation between thev measure and stretchinglongation
ering its integral over measurable sets. To analyze the corlynamics. From Eq(7.2) it follows that

vergence properties of E(7.2), let us first consider the case n
of toral diffeomorphisms Eq(2.6). For these systems, the Inp™Mx)=IN2M(x)+INC=> a(d i(x))+c
elongation\ {V(® ~"(x)) attains the closed-form expression Pu | Pu( 121 ! ( ’

(7.9
e 07 (07 e | |
A (@7"(x))=exp(nA) TH* @ "00)] 67" whereC, c are constants independentqfi.e., the logarithm
& 73 of the nth approximant for thev density is the sum of the

one-step elongation exponeragy) along a forward trajec-
where A =In[(3+/5)/2] is the Liapunov exponent. By fol- tory starting from®~"(x). As a result, the variance2(n)
lowing the same approach used in Sec. VA to prove the={[a,(X)—(an)]?)=([a,(X)—nA]? (A is the Liapunov
convergence of.\" , i.e., by applying Eq(5.22 to the con-  exponent ofb, and(-), the ergodic average withif), can be
tinuous functiong(y)=1/[H*(y)] 'eY| entering into Eq. expressed as
(7.3, we establish that the average density

aZ(n)=((In p" ()= (In p"))?). (7.6
1 . o
5t R %(n) Equation(7.6) can be used as a criterion in order to make a
P (X,€) Pw (Y)dy q
" L(B(€)) Jpe) distinction regarding the structure of themeasure starting

from the statistical analysis of the variance of the elongation
exponent. For a toral hyperbolic diffeomorphism conjugate
converges towards the invariant density E47). A similar  to @ linear diffeomorphism, the varianeg(n) tends towards
result is expected to hold for generic chaotic 2D differen-a constant value fon tending to infinity [lim,_... 5(n)
tiable area-preserving systems. A quantitative numerical o2=0]. This corresponds to the fact that the variation of
validation of this statement is illustrated in Fig. 16. This In p{(x) is bounded witm, as is to be expected since the

=Cpw(X)+0(n)+0(e), (7.9
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measure is Lebesgue absolutely continuous @pck) is a az+b

smooth continuous density. Conversely, for generic hyper- fs(2)= cz+d’ zeR, (A2)
bolic diffeomorphisms which are not conjugate to a linear

one (such as the standard map or the Poincetions of

cgaotic. Hamiltonian—fluid-mixing systemsthe variance may pe associated. Conversely, to any nondegenerate ration-
oa(n) diverges witn [41], and from Eq(7.6) it follows that gy transformf g(z) = (az+ B)/(yz+ 5) (i.e., to any linear ra-
this is an indication that the resultingmeasure may exhibit tional transform which does not reduce to a constant, which

a singular structure almost everywhere, as numerically Ob'rmplies ad—By#0), an elemenB of SL(2,R) may be de-
served in Sec. VI. fined as

VIll. CONCLUDING REMARKS 1 (a ’8) (A3)

B=—(——
. . . . . ad—By\y &
In this article we have analyzed in detail the properties of

the stationary measure associated with the geometric struc-

ture of the urjstable foliation of 2D _area—preserving differen-By defining the applicationh:R2—R transforming x
tiable dynamics. The convergence in terms of measure of the (x1,%,)" into the real numben(x) =x, /s, it follows that
sequence of analytic approximants .10 has been ad-

dressed both analytically and numerically and the relation-

ships between th& measure and the stretching dynamics hoB= foh
have been developed E(7.2). In particular, the analogy B
between the scaling of the variance of the elongation expo-

nents and the singularity structure of taneasure provides
a simple numerical test to determine whetherwhmeasure

1 1 1 2 = 1 .. .
is absolutely continuoullimy,_., a2(n) =cons or singular mits real distinct eigenvalugsthe corresponding Muus

o 200) —
almost everywhere i€ [lim,_., o(n) =]. _ transform(A2) admits two real fixed points’,z%. The stable
The existence of the-invariant measure, and the possi- point is z%=h(s") and the unstable point E'=h(¢%), &

bility of determining it in a simple wayeither by means qf and €° being the basis vectors spanning the unstable and
Eq. (5.10, (5.11) or through Eq.(7.2)] opens up new hori- gape eigenspaces of the matBx This result is a straight-

zons in the quantitative characterization of laminar chaotiG,n,arg consequence of EGA4). Indeed, ife is an eigen-
fluid systems. Since material lines are asymptotically ats '

tor ofB (Be=\g), b lying Eq.(A4) it foll that
tracted towards the class of equivalence of elements of th\éeC or ofB (Be=Me), by applying Eq.(A4) it follows tha
unstable foliation* (and indeed this convergence occurs
after just a few iterations in most cagethe availability of an _ _ _
analytical expression for the density makes it possible to felh(e)]=h[B(e)]=h(re)=h(e), (AS)
develop a more refined model for chaotic laminar mixing. In

particular, two problems deserve particular attention in the : ' . . ——
future: the definition of new mixing indices based on the"e"h(s) Is a fixed point offg . Consider the unstable eigen

u__ u Uyt H i i
pointwise properties of partially mixed structures, and theV€Clore"=(e3,2;)" associated with the unstable eigenvalue

development of coarse-grained models of reaction-diffusiolt (I\"“|>1). By definition, ce3+dez=\";, ie., c2h(s”)
dynamics in chaotic flows. In both cases, thenvariant ~d=A". The derivatives offg(z) equal 1/€z+d)*, and
measure permits the pointwise quantification of the lengtfhereforefg[h(e")]=(\")"“<1, which shows thah(s") is
distribution of the lamellar structure created by the stretching Stable fixed point. Moreover, the sequefizg of the it-
and folding dynamicsin the limit of negligible diffusion as ~ eratives offg(2), z,.1="fg(z,) starting from any initial
well as a deeper understanding of the interfacial phenomeni20int z,# h(&°) converges fon— o towardsh(e").
controlled by the coherent structures created by chaotic ad- The Mabius transform associated with a hyperbolic linear
vection. diffeomorphism therefore provides a simple way to compute
its invariant orientational propertigg.e., the unstable sub-
spaces In particular, this analysis proves, as a corollary, that

. if B”=(Bi”j) is the nth power of a hyperbolic matrixB
APPENDIX: HYPERBOLICITY AND REAL MO BIUS e SL(2]R), then for anyz,#h(&%) the limit

TRANSFORMS

(A4)

where 5(x) =Bx is the linear transform generated by the
matrix B. If the matrix Be SL(2R) is hyperbolic(i.e., ad-

The group SK2,R) is isomorphic to the group of real- . N "
valued Mdius transforms. With a matriB e SL(2)R), B1Zo+ B, &3 (A6)
[T

lim —/——
n n
B21Zo+ B3 €3

n—o

B=

a b
d), (A1)
¢ holds, which is Eq(5.18).
The analysis can be extended to 2D nonlinear diffeomor-
(ad—bc=1), the linear rational transform phisms®(x). In this case, a Moius transformf o« ,(2) is
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associated with the differentiab* (x). The orientational ~which converges fon— o towards
properties[i.e., a basise’(x) = (e}(x),e5(x))"] for the un-

stable vector spacg; of ® are recovered by considering the _ el(x)
composition lim F"(z2)= ——, xeC, (A8)
n—o eZ(X)
FO(2) = f e (@ 1(X))o T g @-200)°" - Faor 0 -n(30)(2), for almost allz within any hyperbolic invariant submanifold
(A7) Cof ®.
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