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Measure-theoretical properties of the unstable foliation of
two-dimensional differentiable area-preserving systems

A. Adrover and M. Giona
Dipartimento di Ingegneria Chimica, Universita` di Roma ‘‘La Sapienza,’’ via Eudossiana 18, 00184 Roma, Italy

~Received 23 November 1998!

This article analyzes in detail the statistical and measure-theoretical properties of the nonuniform stationary
measure, referred to as thew-invariant measure, associated with the spatial length distribution of the integral
manifolds of the unstable invariant foliation in two-dimensional differentiable area-preserving systems. The
analysis is developed starting from a sequence of analytical approximations for the associated density. These
approximations are related to the properties of the Jacobian matrix of thenth iteration of a Poincare´ map. The
w-invariant measure plays a fundamental role in the study of transport phenomena in laminar-chaotic fluid-
mixing systems, for which it furnishes the asymptotic invariant distribution of intermaterial contact length
between two fluids. Thew-invariant measure turns out to be singular and exhibits multifractal features. Its
associated density displays local self-similarity in an« neighborhood of hyperbolic periodic points. The
cancellation exponent of the signed measure associated with thew measure by attaching at each point the
direction of the field of the asymptotic unstable eigenvectors is also analyzed. The only case for which the
w-invariant measure is absolutely continuous is given by the conjugation of hyperbolic toral automorphisms
with a linear automorphism. The connections with the statistical properties, and in particular with the stretching
dynamics, are addressed in detail.@S1063-651X~99!15405-9#

PACS number~s!: 05.45.2a, 84.40.Ik, 47.53.1n, 83.50.Ws
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I. INTRODUCTION

In many physical problems involving chaotic Hamiltonia
systems and symplectic maps, the central issue is given
the evolution of vectors and line elements and of curve a
advected by the dynamics. Examples include the fast
namo problems in magnetohydrodynamics~for high values
of the magnetic Reynolds number! @1,2#, where attention is
focused on the properties of the magnetic field or fluid d
namic phenomena involving incompressible flows@3,4#,
where interfacial phenomena are controlled by the statist
properties associated with the evolution of curves@in two-
dimensional~2D! systems# or of surfaces~in 3D systems!,
since they form interfaces between different fluid eleme
@5#.

The evolution of interfaces advected by chaotic flo
controls many dynamic phenomena in fluid systems and
understanding is the starting point for a theory of transp
and reaction in laminar chaotic flows@6,7#. If the diffusive
mass transfer is small compared to the convective contr
tion ~i.e., if the Pe´clet number is sufficiently high!, the ef-
fects of diffusion may be overlooked at short or intermedi
time scales. Under these conditions, the kinematics of a
sive tracer particle is described by an ordinary differen
equation@8,9#

dx~ t !

dt
5v„x~ t !,t…, ~1.1!

wherev is a time-dependent velocity field andx5(x,y) t the
position vector of the advected particle. This situation c
tomarily occurs for highly viscous fluids and polymeric s
lutions, which constitute the natural realm of laminar chao
flows.
PRE 601063-651X/99/60~1!/347~16!/$15.00
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As observed by Aref in 1984@8#, 2D incompressible fluid
flows in laminar conditions~i.e., if the inertial contribution is
negligible with respect to the viscous! are perfectly equiva-
lent to Hamiltonian systems through identification of t
stream function with the Hamiltonian and the physical spa
with the phase space of Hamiltonian dynamics. This is
cause, under the conditions stated above, the velocity fiev
in Eq. ~1.1! can be related to the partial derivatives of t
stream functionc as v5(]c/]y,2]c/]x) t. This equiva-
lence makes it possible to extrapolate the simulation
experimental results obtained by considering laminar fl
motion to Hamiltonian systems and vice versa.

It has been observed both numerically and experiment
that area-preserving dynamics~such as incompressible flui
flows! display invariant patterns in the evolution of line el
ments advected by the velocity fieldv under the condition
that the dynamical system Eq.~1.1! is chaotic@10,11# ~see
Sec. II for a formal definition of chaos!. These invariant
properties have been attributed to the dominant role of
unstable manifolds of hyperbolic periodic points which a
dense within a chaotic region@12#. The geometrical explana
tion of this phenomenon lies in the fact that the restriction
a Poincare´ section of a time-periodic 2D differentiable are
preserving flow within a chaotic region defines upon it
hyperbolic map~see Sec. III for a thorough analysis of th
point!, thus inheriting the global geometrical properties ch
acterizing these systems. In particular, within the tang
space of each pointx of an invariant chaotic region, an un
stable directioneu(x) may be defined which is tangent to an
material line passing throughx that has evolved for a suffi
ciently long time. The hyperbolic nature of a chaotic diffe
entiable area-preserving dynamics determines not only
geometry and topology of mixing~since it defines the
asymptotic unstable directioneu(x) attained by tangent vec
tors to fluid interfaces!, but enables us to frame in a quan
347 ©1999 The American Physical Society
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348 PRE 60A. ADROVER AND M. GIONA
tative way the measure-theoretical and statistical prope
in the evolution of material interfaces as an intrinsic prope
of the spatial length distribution of a generic integral ma
fold belonging to the unstable foliation.

In a previous article@13#, it was shown that hyperbolic
area-preserving maps on the torus conjugate to a linear
are characterized by a nonuniform measure associated
the length distribution of the contact interface between fl
elements. This measure is intrinsically different from the u
form ergodic measure and may be viewed as the invar
measure associated with the dynamical systems generate
the unstable vector fieldeu(x). This new measure has bee
referred to as thew-invariant measure. The extension of th
result to generic area-preserving 2D differentiable dynam
is given in Ref.@14#.

This article analyzes in greater detail the structure a
properties of thew-invariant measure for generic are
preserving chaotic differentiable dynamical systems defi
by Eq. ~1.1!, and provides several ways to compute it d
rectly from the differential of thenth iterative of the Poin-
carémap of the flow. The statistical and singular propert
of this measure are addressed in detail since, for a gen
area-preserving map, thew-invariant measure possesses m
tifractal scaling properties and a sign-singular measure m
be associated with it. To complete the analysis, the conn
tion between stretching dynamics andw-invariant measure is
thoroughly examined since it provides striking evidence
the close connections between global geometric invar
features and statistical properties.

This article is organized as follows. Section II introduc
the basic definitions and the model systems considered.
tion III develops a succinct but self-contained analysis of
hyperbolicity and orientational properties of differentiab
area-preserving dynamics. Section IV addresses the geo
ric structure of the unstable foliation as well as its relati
with the evolution of material lines and defines t
w-invariant measure. Section V develops closed-form
pressions for a sequence of approximants of thew-invariant
density, by making use of the invariant orientational prop
ties of chaotic differentiable area-preserving dynamics. C
vergence properties are also addressed. Section VI ana
the singularity structure of thew-invariant measure throug
multifractal analysis and through the cancellation expon
of the associated signed measure defined starting from
field of unstable eigenvectors. Section VII develops the c
nection between thew-invariant density and stretching dy
namics, thus providing an alternative expression for a
quence of approximants of thew density based on the
multiplicative stretching dynamics.

II. MODEL SYSTEMS AND BASIC DEFINITIONS

Throughout this article, 2D time-periodic area-preserv
differentiable dynamical systems of the form given by E
~1.1! are considered. The velocity fieldv therefore satisfies
the conditionv(x,t1T)5v(x,t), whereT is the period of the
perturbation. F is used to indicate the Poincare´ map asso-
ciated with Eq.~1.1!, obtained by sampling the trajectorie
modulo the periodT. In this way, the dynamics is describe
by means of an autonomous dynamical system.

xn115F~xn!, ~2.1!
es
y
-

ne
ith
d
-
nt
by

s

d

d

s
ric
-
y

c-

f
nt

ec-
e

et-

-

-
-

zes

nt
he
-

e-

g
.

where xn5x(nT), defined on a two-dimensional manifol
M. Attention is restricted to differentiable dynamics. W
therefore assume thatF is at least aC2 diffeomorphism, i.e.,
fortiori that bothF and its inverseF21 are differentiable
and their Jacobian matrices continuous.

We use the termF* (x)5]F(y)/]yuy5x to indicate the
differential of F at x, i.e., its Jacobian matrix.F* (x) is a
mapping of the tangent spaceTMx at x onto the tangent
spaceTMF* „x) at the image point. The differentialF* (x) is
the basic mapping in order to analyze the first-order prop
ties of the Poincare´ mapF, and in particular the evolution o
vectors tangent to curves~representing the boundary of
fluid–phase-space element! advected by the velocity fieldv.
The condition of area preservation means that the dete
nant of the differential is in absolute value equal to 1 for
xPM . In the case of the dynamical system considered,
more restrictive condition det„F* (x)…51 holds, thus imply-
ing that the differentialsF* (x) for xPM belong to the
group of unimodular matrices SL~2,R!. By definition, the
differential Fn* (x) of the nth iterative ofF is given by

Fn* ~x!5F* „Fn21~x!…•F* „F~x!…•F* ~x!

5 )
j 50

n21

F* „F j~x!….

The definition of stretching can be directly referred to t
action of the differential. Given a vectorvPTMx , the
stretching aftern steps atx can be defined asl (n)(x,v/ivi)
5iFn* (x)vi /ivi . This definition for the stretching at a poin
depends not only onx but also on the orientation of th
initial vector, i.e., onv/ivi.

We assume a fairly general definition of chaos for ar
preserving mappings. A mapF is said to be chaotic within
an invariant submanifoldC#M if, for eachxPC and for any
vector vPTCx , the sequence of vectorsFn* (x)v is un-
bounded in norm, either forward (n→`) or backward (n
→2`) in time @15#, i.e.,

sup
2`,n,`

iFn* ~x!vi5`. ~2.2!

This definition is related to the sensitive dependence w
respect to the initial conditions typical of chaotic dynamic
systems, since the distance between the evolution of ne
points iFn(x1«)2Fn(x)i for small « can be expanded to
the first order to giveiFn* (x)«i;exp(nl)i«i with l.0.

Throughout this article we consider three representa
models of area-preserving differentiable dynamics in two
mensions: the standard map, the Duffing oscillator, an
family of toral diffeomorphisms conjugated to a linear h
perbolic one. The standard map, introduced by Chirikov@16#
is defined on the two-dimensional torus and is given by

H xn115xn2~k/2p!sin~2pyn! mod 1

yn115yn1xn11 mod 1.
~2.3!

For k.k* .0.97~value of the parameterk corresponding to
the breakup of the last KAM torus@17#! there exists one
region ~at least! in the phase space within which the map
chaotic.

The Duffing oscillator is another typical prototype o
Hamiltonian chaos@18#. The equations of motion are
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PRE 60 349MEASURE-THEORETICAL PROPERTIES OF THE . . .
ẋ5y,
ẏ5x2x31g cos~vt !, ~2.4!

where ẋ5dx/dt and corresponds to a nonlinear oscillat
with a 2-4 potential in the presence of a sinusoidal pertur
tion. An analytical expression for the Poincare´ mapF is not
available for the Duffing oscillator and it should therefore
computed numerically. The variablesx, y and time~t or n!
entering into Eqs.~2.3! and ~2.4! are considered to be mad
dimensionless upon a suitable variable rescaling.

We also consider another prototype of chaotic dynam
on the two-dimensional torusT 2. Given the linear toral au-
tomorphismB(x)5Bx mod 1, expressed by the integer-val
matrix B @19#

B5S 1 1

1 2D , ~2.5!

and a family area-preserving diffeomorphismH of the torus,
a family of dynamical systemsF can be constructed, topo
logically conjugate withB,

F5H21+B+H, ~2.6!

where + indicates composition. SinceB is globally chaotic
within T 2 ~and is indeed a classical example of a uniform
hyperbolic system on a two-dimensional manifold@19,20#—
also see Sec. III!, F also possesses the same properties.
pological conjugacy implies that the trajectories ofB are
mapped onto the trajectories ofF so that

Fn5H21+Bn+H. ~2.7!

This class of systems has been extensively investigate
Refs. @13, 21# and is particularly suitable for analytical in
vestigation since closed-form expressions for its trajecto
can be easily obtained due to the linearity ofB. As a candi-
date forH, the standard map defined by Eq.~2.3! may be
chosen.

The family of toral diffeomorphisms Eq.~2.6! is particu-
larly interesting for the purposes of this article for two ma
reasons:~1! a closed-form expression for thew measure is
available@13# and~2! their w measures possess basic diffe
ences with respect to the corresponding measures define
maps associated with physically realizable Hamiltonian s
tems such as the Duffing oscillator and the standard map~see
Secs. VI and VII!.

III. HYPERBOLICITY AND ORIENTATIONAL
PROPERTIES OF DIFFERENTIABLE DYNAMICS

Hyperbolicity is the key concept applied to infer the gl
bal geometric features of differentiable dynamics@19,20,22#.
Essentially, a diffeomorphic mapF is hyperbolic ~or
Anosov! on an invariant submanifoldC if it induces a split-
ting of the tangent spaceTCx at anyx belonging toC into two
vector subspacesEx

u ~the unstable or dilating subspace! and
Ex

s ~the stable or contracting subspace!:

TCx5Ex
u

%Ex
s , ~3.1!
-

s

o-

in

s

for
s-

where % indicates direct sum of vector subspaces. The
stable and~stable! vector sub-bundles$Ex

u%xPC , ($Ex
s%xPC) are

invariant under the differential, i.e.,

F* ~x!uEx
u5EF~x!

u , F* ~x!uEx
s5EF~x!

s , ~3.2!

and possess the dynamic properties of expanding~contract-
ing! vectors. In particular, for uniformly hyperbolic system
~uniformly Anosov!, the expanding properties ofEx

u and the
contracting properties ofEx

s are uniform inC, which implies
that there exist constantsa,b,c,d.0 andl.1 such that if
vuPEx

u andvsPEx
s then

iFn* ~x!vui>alnivui , i~F2n!* ~x!vui<bl2nivui ,

~3.3!

i~F2n!* ~x!vsi>clnivsi , iFn* ~x!vsi<bl2nivsi .
~3.4!

Hyperbolic theory has been generalized by Pesin@22,23# to a
more general class of systems referred to as nonunifor
hyperbolic, for which the stable-unstable splitting Eqs.~3.1!
and~3.2! hold, while Eqs.~3.3! and~3.4! for the expansion-
contraction rates are reformulated in a weaker nonunifo
~position-dependent! way. A succinct review of Pesin’s
theory can be found in Ref.@24#.

There is a close relation between chaotic behavior as
fined by Eq.~2.2! and hyperbolicity. Equation~2.2! is the
basic condition defining a quasi-Anosov diffeomorphism
a submanifoldCc @15#. Indeed, Man˜é has proved that, for
two-dimensional compact submanifoldsCc , the property ex-
pressed by Eq.~2.2! implies that the diffeomorphismF is
also Anosov@15#, and thereforeCc admits a hyperbolic struc
ture invariant underF. This property is strictly valid for
two-dimensional manifolds, while in three or more dime
sions the situation is more complex@15#. For two-
dimensional systems, however, the Man˜é theorem implies
that chaotic area-preserving diffeomorphisms are hyperb
once restricted to an invariant chaotic region, although
perbolicity cannot be extended over all the phase space.
result is of fundamental importance in the study of chao
dynamical systems restricted to the chaotic region~which
turns out to be the most important case in the study of c
otic systems and of stretching dynamics! because it enable
us to apply the powerful apparatus of hyperbolic theory
physically interesting problems associated with Poinc´
maps of Hamiltonian systems or with models of 2D inco
pressible flows. The result obtained by Man˜é holds for com-
pact submanifolds. In cases where compactness is lost
splitting of the tangent space expressed by Eqs.~3.1! and
~3.2! still holds, but the bounds for the rate of expansion a
contraction along the unstable and stable vector sub-bun
remain an open problem. For the purposes of the pre
article, this result is sufficient to constitute the fundamen
starting point for the construction of a geometric invaria
theory.

The relationships between chaotic behavior and hyper
licity are referred to by some authors@25# as Ruelle’s chaotic
hypothesis@26#, which has been interpreted by Gallavo
and Cohen as follows: ‘‘a chaotic mechanical system can
regarded for practical purposes as a topological mixing s
tem’’ @27#, i.e., as a mixing Anosov system. Though relat



ny
na

a
t

a-
el
de
ic

q

r
r t
g

e

e

to
u
g

i-

th
s

rie

r

rc
rm

eaf
of

,

ith
g
n-
h

t a

l

gh

or

l

-

e
a

-
is
ss

a
lass.
n is

er-
na-

350 PRE 60A. ADROVER AND M. GIONA
primarily to the analysis of dissipative dynamics with ma
degrees of freedom and aimed at the analysis of their Si
Ruelle-Bowen~SRB! measures@29#, the observation put for-
ward by Gallavotti can by applied to 2D differentiable are
preserving systems. Borrowing a highlighting analogy due
Gallavotti @27#, we can state that hyperbolicity for 2D are
preserving differentiable dynamics provides a mod
independent theoretical framework to describe and un
stand their global geometric and measure-theoret
properties~namely, thew measure discussed in Sec. IV! just
as Boltzmann’s ergodic hypothesis led to the success of e
librium statistical mechanics.

In 2D systems bothEx
u andEx

s are one-dimensional vecto
subspaces. The numerical evaluation of a vector basis fo
unstable vector subspaceEx

u can be obtained by enforcin
the concept of asymptotic directionality@28#, by considering
the sequence of unstable eigenvectorsen

u(x) of the differen-
tial Fn* „F2n(x)…

Fn* „F2n~x!…en
u~x!5vn~x!en

u~x!. ~3.5!

Indeed, if a diffeomorphism is hyperbolic inC then the se-
quence of eigenvectorsen

u(x) eventually exists@30# with
uvn(x)u→` and converges~in direction! to a limit eigenvec-
tor eu(x) spanningEx

u . The same property holds for th
stable vector sub-bundle by consideringF21 instead ofF,
thus obtaining the basis$es(x)%. An alternative way of com-
puting eu(x) makes use of the homeomorphism betwe
SL~2,R! and real-valued Mo¨bius transforms~as discussed in
the Appendix!.

The invariant hyperbolic structure makes it possible
decouple the stretching dynamics in terms of a strictly m
tiplicative process. For two-dimensional systems, the elon
tion exponent aftern iterations at pointx can be defined as

an~x!5 ln le
~n!~x!5 lniFn* ~x!eu~x!i , ~3.6!

wherele
(n)(x) defines the elongation. Contrary to the defin

tion of the stretchingsl (n)(x,v/ivi), the elongationle
(n)(x)

is, strictly speaking, a field, i.e., depends exclusively on
position x ~for fixed n!. This definition of elongations ha
been already discussed by several authors@28,31#, and is
applied in Sec. VII.

IV. GEOMETRIC STRUCTURE OF THE UNSTABLE
FOLIATION

Given the unstable vector sub-bundle$eu(x)%xPC , it is
possible to define the dynamical system generated byeu(x),

dxw~p!

dp
5eu

„xw~p!…, ~4.1!

starting fromxw(p50)5xoPC. In Eq. ~4.1! the parameterp
plays the role of a generic parametrization of the trajecto
generated by the unstable sub-bundle. Equation~4.1! makes
sense since by hypothesiseu

„xw(p)… is continuous along the
trajectories, and the corresponding dynamical system is
ferred to as thew system associated with the Poincare´ mapF
@33#.
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Consider a generic pointxoPC, and the solutionxw(p;xo)
of Eq. ~4.1! for pP@0,p1# passing as initial condition (p
50) throughxo . This solution defines a curve arcgxo

1 (p1)

on C. Similarly, by exchangingp with 2p and integrating
from 0 to 2p1 , it is possible to define a new curve a
gxo

2 (p1). These two curve arcs can be joined together to fo

a single curve arcwxo

u (p1)5gxo

2 (p1)øgxo

1 (p1) passing

throughxo . By definition wxo

u (p1) is continuous and differ-

entiable atxo and may be referred to as a local unstable l
at xo . An important property of the local unstable leaves
thew system is their invariance with respect toF: the image
F„wxo

(p1)… of wxo
(p1) throughF is a local unstable leaf

the solution of Eq.~4.1! passing throughF(xo). This result
stems from the invariance of the unstable sub-bundle w
respect to the differentialF* . Because of the expandin
properties ofF* along the unstable sub-bundle, a local u
stable leafwxo

u (xo) for p1→` becomes unbounded in lengt

and space filling onC in the sense that it is dense onC. As a
result, it is possible to define a global unstable leaf a
generic pointxoPC as the limit ofwxo

(p1) for p1→`, or

equivalently as the limit forn→` of the sequence of integra
manifolds $Fn

„wF2n(xo)
u (p1)…%. We shall use the notation

wxo

u to indicate such a global unstable leaf passing throu

xo . The family of all the distinct global unstable leaves f
xoPC is referred to as the invariant unstable foliationFu

5$wxo

u %xoPC of F in C.
In particular, ifxp is a hyperbolic fixed~periodic! point of

F, the integral manifoldwxp

u (p1) corresponds to the loca

unstable manifoldWloc
u (xp) of xp defined in dynamical sys

tem theory@18#,

Wloc
u 5$xPU«uF2n~x!→xp as n→`

and F2n~x!PU« ; n>0%, ~4.2!

and the global unstable manifoldW u(xp), defined as the
union of the images ofWloc

u (xp) throughFn,

W u~xp!5 ø
n>0

Fn
„W loc

u ~xp!…, ~4.3!

coincides with the leafwxp

u of the unstable foliation.

SinceF u is transitive inC ~i.e., each leaf of the unstabl
foliation fills C densely!, and since two leaves passing in
neighborhood of a pointx possess close tangent vectors~be-
cause the vector subspaces$Ex

u% are continuous almost ev
erywhere inC!, a generic leaf of the unstable foliation
representative of the foliation itself. More precisely, a cla
of equivalence of the leaves ofF u can be defined in such
way that all the leaves belong to the same equivalence c
The equivalence between leaves of the unstable foliatio
graphically depicted in Figs. 1~a! and 1~b! in the case of the
standard map (k52). Figure 1~a! shows a portion ofwxo

u

starting from a randomly chosen pointxoPC ~the chaotic
region is dotted!, while Fig. 1~b! shows a portion of the

unstable manifold of the hyperbolic fixed pointxp5(0,1
2 ).

For the purposes of a global geometric theory of 2D diff
entiable area-preserving dynamics, it is immaterial to a
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lyze the properties of a generic leaf of the unstable foliat
or the global unstable manifold of some particular hyperbo
periodic point since both the manifolds contain exactly
same amount of information on the invariant dynamics a
global geometry of the system. This observation is use
especially in the analysis of fluid mixing systems since
indicates that a generic leaf ofF u ~and not only the unstable
manifold associated with some particular hyperbolic perio
points! is the fundamental template for the asymptotic ev
lution of material lines and partially mixed structures a
vected by the flow@34#.

As can be argued from visual inspection of Fig. 1, t
spatial distributions of the unstable leaves within a chao
region is highly nonhomogeneous. This spatial heterogen
has been already observed in the evolution of material li
advected by laminar chaotic flows@5# and is of primary rel-
evance for the quantitative modeling of the interfacial ph
nomena controlled by the structure of material lines~a closed
material line is the boundary of a fluid element!. A typical
example of such problems is reaction-diffusion kinetics
laminar chaotic flows in the limit of large Thiele moduli~i.e.,
for very fast reactions! and large Pe´clet numbers~i.e., negli-
gible diffusion! @35#.

For the reason stated above, it is interesting to investig
the statistical and measure-theoretical properties of
leaves of the unstable foliation both within the framework
a global theory of dynamical systems and for its applicatio
to fluid mixing and mechanical models. Let us frame th
project in a quantitative way. Henceforth we shall rega
eu(x) in Eq. ~4.1! as unit vectors~i.e., ieu(x)i51), so that
the parameterp corresponds to the curvilinear abscissa p
rametrizing the unstable leaves ofF u. The measure-
theoretical~space-filling! properties ofF u can be addresse
by analyzing the inter-material length densityrw(x) ~since
2D systems are considered!, i.e., the normalized pointwise
length distribution of a generic leaf ofF u. In laminar chaotic
flows this quantity has a straightforward physical meaning
it provides a pointwise description of the multiplicative fo
mation of striations due to the mixing protocol. Letmw be
the associated measure, referred to as thew-invariant mea-
sure~or simply as thew-measure!. Because of the invarianc
of Fu with respect toF, it follows that the densityrw(x) ~if
it exists! and the measuremw are respectively the invarian
density and measure associated with the dynamical sys
Eq. ~4.1!. Under the assumption of the existence of a den

FIG. 1. ~a! Chaotic regionC ~dotted! and a portion of an integra
manifold~continuous line! obtained by integrating Eq.~4.1! starting
from a randomly chosen initial point withinC. ~b! Portion of the
unstable manifold of the fixed point~0, 1

2!. The dynamical system is
the standard map Eq.~2.3! with k52.
n
c
e
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~this point is analyzed thoroughly in Sec. V!, it follows from
the continuity equation that thew density satisfies the equa
tion

“•@rw~x!eu~x!#50. ~4.4!

In a similar way, iffp
w(x) is the phase flow associated wit

Eq. ~4.1!, thew measure satisfies the equation

mw~B!5mw„~fp
w!21~B!…, ~4.5!

for any measurable setB#C, i.e., is invariant under the flow
associated with Eq.~4.1!. The analysis developed for th
unstable foliation can be extended in a straightforward w
to the stable foliationFs by simply considering the integra
manifolds associated with the stable vector sub-bun
$es(x)%.

In the case of hyperbolic systems given by Eqs.~2.5! and
~2.6!, the unstable vector sub-bundle$eu(x)% can be obtained
analytically @13#, and is given byeu(x)5@H* (x)#21«u,
where«u is the unstable eigenvector of the matrixB

@B«u5lu«u,lu5~31A5!/2,«u5~«1
u ,«2

u! t5~1,lu21! t#.

Where the diffeomorphismH is given by the standard map
the integral manifolds of the unstable foliation can be e
pressed in closed form. Forwxo

the integration of Eq.~4.1!
yields

x5xo6F«1
u~y2yo!

«2
u2«1

u 1
k

2p
@sin~2py!2sin~2pyo!#G .

~4.6!

By enforcing the identity“•$@H* (x)#21«u%50, it readily
follows from Eq.~4.4! that thew densityrw(x) exists and is
given by

rw~x!5Ci@H* ~x!#21«ui , ~4.7!

whereC is the normalization constant. As a consequence,
w measure for hyperbolic diffeomorphisms of the torus@32#
is absolutely continuous with respect to the Lebesgue m
sure. The analysis of the structure of thew-invariant measure
for generic 2D chaotic area-preserving systems is develo
in the following sections.

V. STATIONARY MEASURE OF THE UNSTABLE
FOLIATION

In order to determine an analytic expression for t
w-invariant measure of a generic 2D area-preserving diff
morphism it is convenient to apply a constructive proce
following the advection of a material line iteration by iter
tion. Let g0 be a curve arc~such thatg0ùC is the union of a
discrete number of curve arcs of nonzero length! and gn
5Fn(g0) its image throughFn. The statistical properties o
gn can be addressed by analyzing the intermaterial len
densityrw

(n)(x) at iterationn.
The densityrw

(n)(x) and the associated measuremw
(n) can

be obtained numerically by tracking the curvesgn and by
box counting the length fraction falling within each box
the covering ofC. By invoking the asymptotic equivalenc
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between advected lines and the leaves of the unstable f
tion F u, the sequence of measuresmw

(n) converges in the
limit of n→` towards a stationary measuremw ~w measure!,
which is the invariant measure of the dynamical system,
~4.1!, and the stationary pointwise length distribution of
generic material line stretched and folded by the Poinc´
map F. This phenomenon is shown in Fig. 2 by taking
section alongy5yc and plotting the intersection box mea
suresmw

(n)(xi ,«) representing the fraction of intersection
falling in an interval@xi ,xi1«) alongyc for a filament evo-
lution (n512,14) and for a generic leaf of the unstable f
liation Fu. These two measures have been obtained fro
box counting of the intersections within the intervals of
given partition ofy5yc . The dynamical system considere
is the standard map Eq.~2.3! at k52, yc5 1

2 . These box
measures are normalized as( imw

(n)(xi ,«)«51. Apart from
minor effects due to tangencies between filament evolu
~invariant manifolds! with y5yc , the box counting of inter-
sections is equivalent to the box counting of the length c
tent.

In order to obtain an analytical approximation f
rw

(n)(x) at iterationn, it is convenient~and conceptually more
elegant! to analyze the measure-theoretical properties of
~4.1! by enforcing asymptotic directionality, Eq.~3.5!. This
will provide a deeper insight into the functional form o
rw

(n)(x) than the purely numerical tracking and box-counti
of a material line. Let us setA(n)5Fn* „F2n(x)…5(Ai j

(n)).
For sufficiently largen, within the chaotic regionC

tr@Fn* „F2n~x!…#5A11
~n!1A22

~n!5ln
u11/ln

u5ln
u1o~n!,

xPC, ~5.1!

whereo(n) is a quantity tending~exponentially! to zero for
n→`. Within this approximation~which proves to be exac

FIG. 2. Intersection box measuremw
(n)(x,«) vs x at y5

1
2 for the

standard map atk52 («5531024). ~a! Filament evolution,n
512, ~b! filament evolution,n514, ~c! generic leaf of the invarian
unstable foliationFu.
ia-
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for n→`), the eigenvectoren
u(x)5(en,1

u ,en,2
u ) t can be ob-

tained from the solution of the equation

2A22
~n!en,1

u 1A12
~n!en,2

u 50 ~5.2!

or, equivalently,

A21
~n!en,1

u 2A11
~n!en,2

u 50. ~5.3!

A non-normalized basis forEx
u can therefore be approximate

by

ên
u~x!5~A12

~n! ,A22
~n!! t ~5.4!

or, equivalently, by

ên
u~x!5~A11

~n! ,A21
~n!! t. ~5.5!

The reason why two different approximations, Eqs.~5.4! and
~5.5!, are obtained is related to hyperbolicity. The different
A(n)5Fn* „F2n(x)… possesses entries which diverge exp
nentially asn increases and is subjected to the conditi
det(A(n))51. Therefore, ifmn;exp(nl) (l.0) indicates
the maximum over the entries ofA(n), the normalized matrix
Ã(n)5A(n)/mn admits a determinant exponentially decrea
ing to zero. This implies that the two column vectorsen,1

u

5(A11
(n)/mn ,A21

(n)/mn) t, en,2
u 5(A12

(n)/mn ,A22
(n)/mn) t forming

Ã(n)5(en,1
u ,en,2

u ) become colinear with each other asn in-
creases, and two different expressions foren

u(x), Eqs. ~5.4!
and ~5.5!, are available.

By differentiating the identityFn
„F2n(x)…5x, it follows

that

A~n!5Fn* „F2n~x!…5@„F2n~x!…* #21, ~5.6!

and the vectorên
u(x) can therefore be expressed as

ên
u~x!5S 2

]F i
2n~x!

]x2
,
]F i

2n~x!

]x1
D t

i 51,2, ~5.7!

wherex5(x1 ,x2) t is a Cartesian coordinate system for t
phase manifold andF i

2n(x) the i th component of the map
F2n. As can be observed from Eq.~5.7!, the functionsF i

2n

( i 51,2) play the role of asymptotic invariant ‘‘stream fun
tions,’’ determining through Eq.~4.1! the invariant proper-
ties of the unstable manifolds ofF in the limit for n→`.
The choice ofi 51,2 in Eq. ~5.7! determines two different
approximations forên

u(x) which return a vector colinear to
eu(x) in the limit of n→` and are therefore fully equivalen

Equation~5.7! is the starting point in order to determin
an analytic expression forrw

(n)(x). Indeed, from Eq.~5.7! it
is easy to see that

“•ên
u~x!52

]2F i
2n~x!

]x1]x2
1

]2F i
2n~x!

]x2]x1
50. ~5.8!

By definition, the nth approximation rw
(n)(x) for the

w-invariant density fulfills the continuity equation

“•@rw
~n!~x!en

u~x!#50, ~5.9!
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whereen
u(x) are colinear withên

u(x) and possess unit norm
Equation~5.9! is a continuity equation analogous to Eq.~4.4!
with rw(x) replaced byrw

(n)(x) andeu(x) replaced byen
u(x).

Since en
u(x)5ên

u(x)/i ên
u(x)i , it follows from Eq. ~5.8! that

“•@ i ên
u(x)ien

u(x)#50, and therefore the comparison with E
~5.9! yields an analytical expression fromrw

(n)(x):

rw
~n!~x!5const3i ên

u~x!i1o~n!5rw
~n!~x!5const

3i“F i
2n~x!i1o~n! i 51,2 ~5.10!

or, equivalently,

rw
~n!~x!5constr̂w

~n!~x!1o~n!,

r̂w
~n!~x!5F S ]F i

n

]x1
D

F2n~x!

2

1S ]F i
n

]x2
D

F2n~x!

2 G1/2

i 51,2.

~5.11!

Equation~5.11! provides a sequence of analytical appro
mations forrw(x) from which the statistical properties of th
measuresmw

(n) generated from these densities and their c
vergence properties can be addressed.

For eachn, the densitiesrw
(n)(x) are differentiable despite

the fact that in the limit forn→` the sequence of measure
mw

(n) converges towards a stationary singular measure, as
be discussed in detail in the next section. This phenome
is illustrated in Fig. 3 by considering the sectional box me
suresm̂w

(n)(xi ,«)

m̂w
~n!~xi ,«!5C~n!E

xi

xi1«

rw
~n!~j,yc!dj, ~5.12!

whereC(n) is a normalization constant such that

(
i

m̂w
~n!~xi ,«!«51,

FIG. 3. Normalized sectional box measuresm̂w
(n)(x,«) vs x along

the x axis (k52) at yc5
1
2 («5531024). ~a! n59, ~b! n510, ~c!

n511.
-

ill
on
-

and rw
(n) is given by Eq.~5.11!, for the standard map Eq

~2.3! at k52, yc5 1
2 andn59,10,11.

The analysis of the results shown in Fig. 3 and its co
parison with Fig. 2 make it possible to draw the followin
conclusions.~a! The sequence of approximantsmw

(n) obtained
through Eq.~5.11!,

mw
~n!~D!5E

D
rw

~n!~x!dx, ~5.13!

whereD is a Borelian set, converges with sufficient rapidi
towards a spatially nonuniform stationary measure.~b! This
measure coincides with the box measure obtained from
box counting of the length of a generic material line evolv
for a sufficiently long time, or equivalently from the bo
counting of the pointwise length distribution of a leaf ofFu.

Indeed, Eqs.~5.10! and ~5.11! yield two different se-
quences of approximants (i 51,2) for rw

(n) . Figures 4~a!,
4~c!, and 4~e! and Figs. 4~b!, 4~d!, and 4~f! show, respec-
tively, the two sequences of sectional box measu
m̂w

(n)(x,«) at y50.4 for the standard mapk52, evaluated
from Eq. ~5.11! for i 51 and i 52. It may be observed tha
the two approximations both converge towards the same
tionary measure although the convergence rate may be
ferent.

Although asymptotic directionality, Eq.~3.5!, holds only
for points x belonging to a chaotic region, the final expre
sion for rw

(n)(x) Eq. ~5.11! can be defined in principle at a
the points of the phase manifold. This is indeed a very use
final result in that it implies noa priori knowledge of the
location of the chaotic region, and deserves further disc
sion. If C belongs to a chaotic region, the normi“F i

2n(x)i
grows exponentially withn, while if it does not, the sequenc
i“F i

2n(x)i grows more slowly than any exponential and t
resultingw density becomes zero at the point forn→`. This
phenomenon is depicted in Fig. 5, which shows the lo
normal plot of the sectional box-measures evaluated ayc
5 1

2 for the standard map atk52 (n59,10,11). For this
particular parameter value, the standard map exhibits ayc
5 1

2 a large central region of quasiperiodicity@see Fig. 1~a!#
and consequently thenth order approximation of thew mea-
sure tends to zero with an exponential rate at all the point
this region.

A. Uniformly hyperbolic systems and convergence ofµw
„n…

This section analyzes the convergence properties of
sequence of approximantsmw

(n) derived from Eq.~5.11! for
thew measure. To this end, toral diffeomorphisms conjug
with a linear map Eq.~2.6! provide a useful model system
since an analytic expression for thew-invariant density
rw(x), Eq. ~4.2!, is available for this class of systems.

For toral diffeomorphism Eq.~2.6!, the matrixA(n) de-
fined in Sec. V attains the form

A~n!5Fn* @F2n~x!#5@H* ~x!#21Bn@~H21!* ~y!#y5B2nH~x!

~5.14!

obtained by making use of the identity Eq.~5.6!. Let us
indicate withhi j , ki j , andBi j

n , respectively, the entries o
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FIG. 4. Normalized sectional box measuresm̂w
(n)(x,«) vs x along thex axis (k52) at yc50.4 («5531024) evaluated from the two

different approximations ofr̂w
(n)(x), Eq. ~5.11!. ~a! n55, i 51, ~b! n55, i 52, ~c! n57, i 51, ~d! n57, i 52, ~e! n510, i 51, ~f! n510,

i 52.
@H* (x)#21, @(H21)* (y)#y5B2nH(x) , and Bn. By applying
Eq. ~5.11!, the nth order approximation for thew density
rw

(n)(x) attains the form

r̂w
~n!5@~A1i

~n!!21~A2i
~n!!2#1/2, i 51,2, ~5.15!

where

A12
~n!5h11~B11

n k1i1B12
n k2i !1h12~B21

n k1i1B22
n k2i !,

A22
~n!5h21~B11

n k1i1B12
n k2i !1h22~B21

n k1i1B22
n k2i !, i 51,2.

~5.16!

It therefore follows that

r̂w
~n!5uB21k1i1B22k2i uA~h11j

~n!1h12!
21~h21j

~n!1h22!
2,

~5.17!

where@see the Appendix, Eq.~A6!#
j~n!5
B11

n k1i /k2i1B12
n

B21
n k1i /k2i1B22

n 5
«1

u

«2
u 1o~n!. ~5.18!

By substituting Eq.~5.18! into Eq. ~5.17!, it follows that

rw
~n!~x!5Cg„F2n~x!…r̂w~x!1o~n!, ~5.19!

where r̂w5@(h11«1
u1h12«2

u)21(h21«1
u1h22«2

u)2#1/2

5i@H* (x)#21«ui is the unnormalizedw-invariant density
Eq. ~4.7!, C a normalization constant, andg„F2n(x)… a func-
tion of F2n(x) given by

g„F2n~x!…5
uB21

n k1i1B22
n k2i u

u«2
uu

. ~5.20!

It is clear to see that the right-hand side of Eq.~5.20! is a
function solely of F2n(x) since ki j are the entries of
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(H21)* (y)y5BnH(x)5@H* „F2n(x)…#21, and the other quan
tities entering into the definition ofg are constant.

Equation~5.19! implies thatrw
(n)(x) is the product of the

smooth, slowly varying functionr̂w(x) and of the highly
spatially fluctuating termg„F2n(x)…. As a consequence o
this, the sequence of densitiesrw

(n)(x) does not converge to
the invariantw density Eq.~4.7!, as shown in Fig. 6 visual
izing the pointwise behavior ofr̂w

(n)(x) along the circumfer-
encex5 1

2 , 0<y<1 at n510 and forH given by the stan-
dard map withk56.

Although the sequence ofrw
(n)(x) does not converge to

wards thew-invariant densityrw(x), it is straightforward to
show that convergence holds in measure. To prove this
us integraterw

(n)(x) over a ballBx(«) of radius« centered at
x. By applying Eq.~5.19! and enforcing the mean value the
rem ~for continuous functions! it follows that

mw
~n!
„Bx~«!…5Cr̂~x«!E

Bx~«!
g„F2n~y!…dy1o~n!

5Cr̂w~x«!E
F2n

„Bx~«!…
g~y!dy1o~n!,

~5.21!

wherex« is a point withinBx(«). SinceF is a mixing andg
a continuous function, it follows that@36#

lim
n→`

E
F2n

„Bx~«!…
g~y!dy5L„Bx~«!…^g&, ~5.22!

whereL~D! is the Lebesgue measure of the setD#T2 and
^g& the ergodic average of the functiong. By substituting this
result into Eq.~5.21!, it follows that the average densit
r̄w

(n)(x,«)

r̄w
~n!~x,«!5

1

L„Bx~«!…
E
Bx~«!

rw
~n!~y!,

dy5rw~x!1o~n!1O~«!, ~5.23!

tends towards thew-invariant density forn→` and for small
«. The result expressed by Eq.~5.23! holds in general for any
measurable set centered atx. This shows that the densit
rw

(n)(x) converges on average, averaged over an arbit
measurable set, towards the absolutely continuous inva
densityrw(x) Eq. ~4.6!. Because of Eq.~5.23!, the box mea-

FIG. 5. Log-normal plot of them̂w
(n)(x,«) vs x along thex axis

(k52) atyc5
1
2 («5531024) for n59,10,11. The arrow indicate

increasing values ofn.
et

ry
nt

sures or the sectional box measures also converge fon
→` if the partition consists of equal boxes. Figure 6 illu
trates this result and shows the excellent agreement betw
r̄w

(n)(x,«) evaluated from the data of Fig. 6~a! and the
w-invariant density Eq.~4.7!.

B. Local self-similarity of the w density

This subsection analyzes the local self-similarity of t
sequencerw

(n)(x) in a neighborhood of a hyperbolic~peri-
odic! point of F. The starting point is the definition Eq
~5.10!, which can be used in order to obtain a recursive
lation for rw

(n) . To this end, observe that the matrixA(n)

satisfies the relation

A~n11!~x!5F* „F21~x!…A~n!
„F21~x!…, ~5.24!

which follows immediately from the definition of

A~n!5@~F2n!* ~x!#215Fn* „F2n~x!…5P j 51
n F* „F2 j~x!….

Consequently, the vectorsên
u(x) defined by Eqs.~5.4! and

~5.5! satisfy the equation

ên11
u ~x!5F* „F21~x!…ên

u
„F21~x!…, ~5.25!

and the resulting densityr̂w
(n)(x)5i ên

u(x)i satisfies the recur-
sive equation

r̂w
~n11!~x!5iF* „F21~x!…en

u
„F21~x!…ii ên

u~x!i

5iF* „F21~x!…en
u
„F21~x!…i r̂w

~n!
„F21~x!…,

~5.26!

where en
u(x) is the normalized unit vector colinear wit

ên
u(x). Therefore, fory belonging to an« neighborhood

U«(xp) of a hyperbolic fixed pointxp and for sufficiently
large values ofn @such thaten

u(x).eu(x)#, we obtain

r̂w
~n11!~xp1y!.uluur̂w

~n!@F21~xp1y!#, ~5.27!

wherelu is the unstable eigenvalue ofF* (xp) and u u indi-
cates the absolute value. Equation~5.27! is derived from Eq.
~5.26! by enforcing the continuity of the differentialF* (x).
The Taylor expansion ofF21(xp1y) in the neighborhood of
the fixed pointxp yields

FIG. 6. ~a! Pointwise behavior ofrw
(n)(x) evaluated from Eq.

~5.17! along the circumferencex5
1
2 , 0<y,1 for n510 and forH

given by the standard map (k56). ~b! Comparison ofr̄w
(n)(x,«)

Eq. ~5.23! at n510 numerically evaluated fromrw
(n)(x) illustrated

in Fig. 6~a! and the theoretical expression forrw(x), Eq. ~4.7!.
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r̂w
~n11!~xp1y!.uluur̂w

~n!
„xp1@F21~xp!#* y…. ~5.28!

Equation~5.28! implies that, ifyies(xp) then

r̂w
~n11!~xp1y!.uluur̂w

~n!~xp1luy!. ~5.29!

In the more general case, under the condition thaty is trans-
versal toeu(xp), we obtain

r̄w
~n11!~xp1y!.uluunf̂ xp

~xp1$@F21~xp!#* %ny!.
~5.30!

Since xp is a fixed ~periodic! point, the application of
$@F21(xp)#* %n to y yields a vector colinear toes(xp) in the
limit of n→`, i.e.,

$@F21~xp!#* %ny5~lu!nyses~xp!1~lu!2nyueu~xp!

.~lu!nyses~xp!, ~5.31!

where ys,yu are the components ofy along the stable and
unstable eigenspaces ofF* (xp). By collecting together Eqs
~5.30! and ~5.31!, it follows that foryPU«(xp)

r̂w
~n!~xp1y!5uluunf xp

~lu
nys!1o~n!, ~5.32!

wheref xp
(x) is an invariant function independent ofn andys

is the component ofy along the asymptotic stable directio
spanned byes(xp) given by „F* (xp)es(xp)5lu

21es(xp)….
Equation ~5.32! is the final result expressing the se
similarity of the approximantsrw

(n)(x) in the neighborhood
of a hyperbolic fixed point. A numerical validation of Eq
~5.32! is given in Fig. 7, which shows the graph ofr̂w

(n)

3(j)/lu
n vs j5lu

nys for different values ofn, and for differ-
ent orientations ofy near the hyperbolic fixed point~0,1

2! of
the standard map (k52). The result derived for hyperboli
fixed points can be extended in straightforward fashion
hyperbolic periodic points of prime periodm, which are the
fixed points of theFm(x).

The self-similarity in the neighborhood of periodic poin
indicates that the structure of thew-invariant measure can b
regarded as organized around the skeleton of the hyperb
periodic points ofF, which are dense within the chaot
region C. The global structure ofrw(x) is therefore con-
strained by the local scaling of thew densities expressed b
Eq. ~5.32!. In principle the scaling properties of th
w-invariant measure inC can be derived starting from it

FIG. 7. r̂w
(n)(j)/lu

n vs j5lu
nys for different orientations and

iterations near the hyperbolic fixed point~0, 1
2! of the standard map

(k52).
o

lic

local behavior on the dense subset of its hyperbolic perio
points. This phenomenon for the measure-theoretical pro
ties of the unstable foliation is similar to the scaling prop
ties of the invariant measure~the SRB measure! for chaotic
dissipative attractors, which can be viewed as organi
around the structure of the periodic points@37#. A further
discussion of this analogy is developed in Sec. VII. Sin
each hyperbolic periodic point is characterized by a differ
scaling factor~eigenvalue!, it is to be expected that the re
sulting w-invariant measure may exhibit highly singular an
indeed multifractal features. This topic is examined in t
next section.

VI. SINGULAR PROPERTIES OF THE w-INVARIANT
MEASURE

This section develops a numerical analysis of the singu
structure of thew-invariant measure by considering th
structure of itsf (a) spectrum and its sign-singularity ass
ciated with the orientational properties of the vectorsên

u(x)
defining r̂w

(n)(x) through Eq.~5.10!.

A. Multifractal properties

In order to investigate the singularity properties of thew
measure, the standard multifractal approach is applied@39#
by first analyzing the scaling properties of the moments
the normalized sectional box-measures

(
i 51

Nk

@pi
~n!~«k!#

q;«k
~q21!D̂~q! , ~6.1!

where pi
(n)(«k) is the nth order approximation of the sec

tional box measure of thei th interval of the partition of size
«k . The analysis was performed by considering«k522k, k
51, . . . ,15.

Figure 8 shows the behavior of the functionsZk
q

5$(i51
Nk @pi

(n)(«k)#
q%1/(q21) for some characteristic values ofq

in the interval@210, 10#, the slope of which in a log-log plo
equals the generalized dimensionD̂(q) of order q. These
data refer ton511, and to a sectional box measure evalua
at yc50.4 for the standard map atk52. As can be observed
a neat scaling behavior~in the whole range ofq! exists over
more than three decades of«k . Similar results were also
obtained for the different values ofn and different sections

FIG. 8. lnZ k
q/ (q21) vs «k for the sectional box measure

m̂w
(n)(x,«) of the standard map (k52) at yc50.4 andn511. The

arrow indicates increasing values ofq.
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(yc) considered. These results are summarized in Fig
which shows the spectrum of generalized dimensionD̂(q)
for yc50.4 @Fig. 9~b!# and for yc5 1

2 @Fig. 9~a!# at n

510,11,12. TheD̂(q) curves for different values ofn col-
lapse onto a unique invariant curve, thus giving anot
quantitative confirmation thatnth order sectional box mea
sures converge towards an invariant measure~as already
shown in qualitative terms in Fig. 2!. The comparison of
Figs. 9~a! and 9~b! reveals that theD̂(q) spectra for different
values ofn collapse onto a unique invariant spectrum whi
is the same for all the differentyc sections analyzed, thu
confirming that the simpler analysis of the multifractal pro
erties of sectional box measures provides an insight into
singularity structure of thew measure as a whole. Thef (a)
spectra corresponding to theD̂(q) curves shown Figs. 9~a!
and 9~b! are illustrated in Fig. 10.

The observation that the singularity properties of t
w-invariant measure can be inferred from the analysis of s
tional box-measures is further supported by the numer
observation that there exists a simple relationship betw
the spectrum of generalized dimensionsD̂(q) evaluated
from sectional box measures and the spectrumD(q) evalu-
ated from thew-invariant measure defined onC as a whole:

D~q!5D̂~q!11, ~6.2!

as was to be expected given the meaning of sectional
measures. Figure 11 shows the excellent agreement bet
D̂(q) and D(q)21 in the case of the standard map
k52.

The singular nature of thew-invariant measure seems
be a general feature of 2D area-preserving diffeomorphi

FIG. 9. Spectrum of generalized dimensions of the sectional
measuresm̂w

(n)(x,«) for the standard map (k52). ~a! yc5
1
2 , n

510,11,12,~b! yc50.4, n510,11,12.

FIG. 10. f (a) spectrum of the sectional box measur
m̂w

(n)(x,«) for the standard map (k52). ~a! yc50.5, n510,11,12,
~b! yc50.4, n510,11,12.
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which are not conjugate to a linear hyperbolic transform
tion, although different systems may show rather differe
spectra of generalized dimensions. A typical case is given
the Poincare´ section of the Duffing oscillator Eq.~2.4!. Fig-
ures 12~a! and 12~b! shows a sectional box measure for th
system. A distribution of localized singularities can be o
served, Figs. 12~a! and 12~b!, although a log-normal plot
@Fig. 12~c!# unveils a rich singular structure. Its spectrum
generalized dimensions is shown in Fig. 13. The behavior
negativeq values is particularly interesting. From the visu
inspection of the sectional box measures the spectrum
generalized dimensions may be expected to be sensitiv
the presence of localized zeroes. This observation would
plain the sudden elbow obtained for negative values oq

near21. The solid line in Fig. 13 shows theD̂(q) spectrum
~for negativeq! associated with localized zeroesmw

(n);«a of
intensitya51.88, which fits in well in qualitative terms with
the observed behavior for negativeq. This observation is of
course grounded on purely numerical data.

x

FIG. 11. Comparison betweenD̂(q) ~continuous line! and
D(q)21 ~dots! for positive values ofq in the case of the standar
map atk52.

FIG. 12. m̂w
(n)(y,«) vs yP@1,3# at x51 andn58 for the Poin-

carésection of the Duffing oscillator Eq.~2.4! (g50.75,v51.0).
~a! y-axis range@0, 8000#, ~b! y-axis range@0, 1000#, ~c! Log-
normal plot.
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Another remarkable property of thew measure arises
from the comparison of the singularity structure associa
with the stable and unstable foliation of the same dynam
system. Figure 14 compares theD̂(q) spectrum~continuous
line! associated with the sectional box measure of the
stable foliation (yc50.4, n511) and theD̂(q) spectrum
~dots! associated with the sectional box measures of
stable foliation aty50.4 for n510 andn511 for the stan-
dard map atk52. The spectra of generalized dimensions
these two measures coincide, i.e., the stable and uns
foliation possess the same singularity structure. This p
nomenon is a consequence of area preservation in 2D
tems. Indeed, ifxp is a hyperbolic fixed point ofFm (m
51,2, . . . ) with the unstable eigenvaluelu , it is also a hy-
perbolic fixed point ofF2m with the same unstable eigen
value. On the dense subset of hyperbolic periodic points,
w densities associated with thew systems generated from th
vector sub-bundles$eu(x)%, $es(x)% therefore possess th
same scaling properties~Sec. V B!. This observation explains
the numerical result shown in Fig. 14.

B. Associated sign-singular measure

In 1992, Ottet al. @2# introduced the so-called cancella
tion exponent in order to characterize the sign-singular pr
erties of the signed measure@40# associated with the mag
netic field in fast magnetic dynamos. Ifn is a signed measur
~a signed measure of a set can take either positive or neg

FIG. 13. Spectrum of generalized dimensionD̂(q) for the sec-
tional box-measures shown in Fig. 12~Duffing oscillator!, with the
corresponding error bars. The bold line, for negative values ofq is

D̂(q)5(q21)21 max$(q21),aq% with a51.88.

FIG. 14. Comparison between theD̂(q) spectrum~continuous
line! associated with the sectional box measures of the unst

foliation (yc50.4,n511) and theD̂(q) spectrum~dots! associated
with the sectional box measures of the stable foliation atyc50.4 for
n510,11 for the standard map atk52.
d
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values!, n is said to be sign singular if it changes sign almo
everywhere on arbitrarily small lengthscales. For a sign
measure, the cancellation exponent may be defined as
lows:

kn5 lim
«→0

sup

ln (
i

un~ I i !u

ln~1/«!
, ~6.3!

where I i denotes thei th interval of an« partition. For a
probability measure and for a signed measure with a smo
densitykn50, while kn.0 indicates an oscillation in sign
on arbitrarily small lengthscales, i.e., the sign singularity
the measure.

We analyzed the sign-singular properties of the sign
measure associated with the normal component of thenth
order unstable eigenvectorsên

u(x) @defining through Eq.
~5.10!, the w density# along a circumference aty5yc , 0
<x<1 for the standard map defined on the torus. The g
metrical meaning of this signed measure is related to
folding of the invariant unstable manifolds and consequen
to the folding dynamics in the evolution of partially mixe
structures.

Figure 15~a! shows the behavior ofn (n)(xi ,«) for the
standard map (k52) for n512 andyc50.4, indicating per-
sistent oscillations in sign at all length-scales. The sign s
gular nature ofn (n) is an asymptotic invariant property. Thi
phenomenon can be highlighted by considering a log-
plot ( i un(I i)u vs «, as shown in Fig. 15~b! for different val-
ues ofn. The corresponding slope~in a log-log plot! yields
the cancellation exponentkn

(n) . The sequencekn
(n) quickly

moves towards a constant value equal tokn50.83, and the
numerical results were obtained by analyzing different s
tions, i.e., different values ofyc .

le

FIG. 15. ~a! Signed measuren (n)(x,«) vs x along the circum-
ferenceyc50.4 ~standard map,k52 n512), ~b! Log-log plot of
( i un (n)(I i)u vs « for n512,13,14. The arrow indicates increasin
values ofn. Line ~a! is ( i un (n)(I i)u;«2kn with kn50.83.
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VII. CONNECTION WITH DYNAMIC AND STATISTICAL
PROPERTIES

There is a close relation between thew measure and the
statistical and pointwise properties characterizing stretch
dynamics. Consider again Eq.~5.26!. For sufficiently largen,
en

u(x)5eu(x)1o(n) for any xPC. Therefore
iF* „F21(x)…en

u(x)i is practically equal to the one-ste
elongationle

(1)
„F21(x)… Eq. ~3.6!, and

r̂w
~n11!~x!5@le

~1!
„F21~x!…1o~n!#r̂w

~n!~x!. ~7.1!

This result indicates a connection between stretching~elon-
gations! and the expression for thew-invariant density, and
suggests the expression

r̃w
~n!5C)

j 51

n

le
~1!
„F2 j~x!…5Cle

~n!
„F2n~x!…, ~7.2!

as another candidate for thenth approximation ofrw(x). Of
course, as in the case of the expressions Eqs.~5.10! and
~5.11!, Eq. ~7.2! may converge only in measure, i.e., cons
ering its integral over measurable sets. To analyze the c
vergence properties of Eq.~7.2!, let us first consider the cas
of toral diffeomorphisms Eq.~2.6!. For these systems, th
elongationle

(n)
„F2n(x)… attains the closed-form expressio

le
~n!
„F2n~x!…5exp~nL!

i@H* ~x!#21«ui
i@H* „F2n~x!…#21«ui ,

~7.3!

whereL5 ln@(31A5)/2# is the Liapunov exponent. By fol
lowing the same approach used in Sec. V A to prove
convergence ofmw

(n) , i.e., by applying Eq.~5.22! to the con-
tinuous functiong(y)51/i@H* (y)#21«ui entering into Eq.
~7.3!, we establish that the average density

r̄w
~n!~x,«!5

1

L„Bx~«!…
E
Bx~«!

r̃w
~n!~y!dy

5Cnr̃w~x!1o~n!1O~«!, ~7.4!

converges towards the invariant density Eq.~4.7!. A similar
result is expected to hold for generic chaotic 2D differe
tiable area-preserving systems. A quantitative numer
validation of this statement is illustrated in Fig. 16. Th

FIG. 16. DistanceDn vs n ~dots! between the sectional bo
measures evaluated starting from Eq.~5.10! and Eq.~7.2!. The sys-
tem is the standard map (k52) and«5229, yc5

1
2 . The solid line

is the exponential fitting of the data.
g
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figure shows the distance

Dn5 H E @m̂w
~n!~x,«!2m̃w

~n!~x,«!#2dxJ 1/2

between the sectional box-measures evaluated starting
Eq. ~5.10!, m̂w(x,«), and from Eq.~7.2! for the same«
5229 as a function ofn. As expected, the distanceDn de-
creases to zero withn, thus supporting the thesis.

We may conclude that the sequence defined by Eq.~7.2!
starting from the multiplicative cascade of elongations yie
a sequence of approximants for thew density which con-
verges in terms of measure. This result is particularly imp
tant since it provides a direct connection between the stre
ing dynamics and the measure-theoretical properties of
unstable foliation. This result displays some analogies w
the corresponding expression for the SRB measure of cha
dissipative systems as a function of stretching along the
stable directions@29,25#. This analogy is only formal, since
the two~SRB andw! measures possess totally different ge
metric and dynamic meaning. The SRB measure for cha
attractors is simply the ergodic measure remaining invar
under the mapF. Its counterpart in 2D area-preserving d
namics restricted to an invariant chaotic submanifold is s
ply the ergodic measurem* associated with the uniform den
sity r* (x)51/L(C) (xPC). Such an invariant measur
makes it possible to express time averages of continu
physical observables as ensemble averages of the ob
ables with respect tom* @38#. Thew-invariant measure is no
an ergodic measure forF: it is neither invariant underF, nor
related to the statistical properties of measurable sets tr
formed byF. The w measure is a stationary measure as
ciated exclusively with the geometric structure of the u
stable foliation and is the invariant measure@see Eq.~4.5!#
for the w system, Eq.~4.1!, generated by the normalize
unstable vector sub-bundle$eu(x)%.

There is another interesting result emerging from the
lation between thew measure and stretching~elongation!
dynamics. From Eq.~7.2! it follows that

ln rw
~n!~x!. ln r̃w

~n!~x!1 ln C5(
j 51

n

a1„F
2 j~x!…1c,

~7.5!

whereC, c are constants independent ofx, i.e., the logarithm
of the nth approximant for thew density is the sum of the
one-step elongation exponentsa1(y) along a forward trajec-
tory starting fromF2n(x). As a result, the variancesa

2(n)
5^@an(x)2^an&#2&5^@an(x)2nL#2& ~L is the Liapunov
exponent ofF, and^•&, the ergodic average withinC!, can be
expressed as

sa
2~n!5^~ ln rw

~n!~x!2^ ln rw
~n!& !2&. ~7.6!

Equation~7.6! can be used as a criterion in order to make
distinction regarding the structure of thew measure starting
from the statistical analysis of the variance of the elongat
exponent. For a toral hyperbolic diffeomorphism conjuga
to a linear diffeomorphism, the variancesa

2(n) tends towards
a constant value forn tending to infinity @ limn→` sa

2(n)
5so

2>0#. This corresponds to the fact that the variation
ln rw

(n)(x) is bounded withn, as is to be expected since thew
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measure is Lebesgue absolutely continuous andrw(x) is a
smooth continuous density. Conversely, for generic hyp
bolic diffeomorphisms which are not conjugate to a line
one ~such as the standard map or the Poincare´ sections of
chaotic Hamiltonian–fluid-mixing systems!, the variance
sa

2(n) diverges withn @41#, and from Eq.~7.6! it follows that
this is an indication that the resultingw measure may exhibi
a singular structure almost everywhere, as numerically
served in Sec. VI.

VIII. CONCLUDING REMARKS

In this article we have analyzed in detail the properties
the stationary measure associated with the geometric s
ture of the unstable foliation of 2D area-preserving differe
tiable dynamics. The convergence in terms of measure of
sequence of analytic approximants Eq.~5.10! has been ad-
dressed both analytically and numerically and the relati
ships between thew measure and the stretching dynam
have been developed Eq.~7.2!. In particular, the analogy
between the scaling of the variance of the elongation ex
nents and the singularity structure of thew measure provides
a simple numerical test to determine whether thew measure
is absolutely continuous@ limn→` sa

2(n)5const# or singular
almost everywhere inC @ limn→` sa

2(n)5`#.
The existence of thew-invariant measure, and the poss

bility of determining it in a simple way@either by means of
Eq. ~5.10!, ~5.11! or through Eq.~7.2!# opens up new hori-
zons in the quantitative characterization of laminar chao
fluid systems. Since material lines are asymptotically
tracted towards the class of equivalence of elements of
unstable foliationFu ~and indeed this convergence occu
after just a few iterations in most cases!, the availability of an
analytical expression for thew density makes it possible t
develop a more refined model for chaotic laminar mixing.
particular, two problems deserve particular attention in
future: the definition of new mixing indices based on t
pointwise properties of partially mixed structures, and
development of coarse-grained models of reaction-diffus
dynamics in chaotic flows. In both cases, thew-invariant
measure permits the pointwise quantification of the len
distribution of the lamellar structure created by the stretch
and folding dynamics~in the limit of negligible diffusion! as
well as a deeper understanding of the interfacial phenom
controlled by the coherent structures created by chaotic
vection.

APPENDIX: HYPERBOLICITY AND REAL MO ¨ BIUS
TRANSFORMS

The group SL~2,R! is isomorphic to the group of real
valued Möbius transforms. With a matrixBPSL(2,R),

B5S a b

c dD , ~A1!

(ad2bc51), the linear rational transform
r-
r

b-

f
c-
-
he

-

o-

c
t-
he

e

e
n

h
g

na
d-

f B~z!5
az1b

cz1d
, zPR, ~A2!

may be associated. Conversely, to any nondegenerate ra
al transformf B(z)5(az1b)/(gz1d) ~i.e., to any linear ra-
tional transform which does not reduce to a constant, wh
implies ad2bgÞ0), an elementB of SL~2,R! may be de-
fined as

B5
1

ad2bg S a b

g d D . ~A3!

By defining the applicationh:R2→R transforming x
5(x1 ,x2) t into the real numberh(x)5x1 /x2 , it follows that

h+B5 f B+h, ~A4!

where B(x)5Bx is the linear transform generated by th
matrix B. If the matrix BPSL(2,R) is hyperbolic~i.e., ad-
mits real distinct eigenvalues!, the corresponding Mo¨bius
transform~A2! admits two real fixed pointszu,zs. The stable
point is zs5h(«u) and the unstable point iszu5h(«s), «u

and «s being the basis vectors spanning the unstable
stable eigenspaces of the matrixB. This result is a straight-
forward consequence of Eq.~A4!. Indeed, if« is an eigen-
vector ofB (B«5l«), by applying Eq.~A4! it follows that

f B@h~«!#5h@B~«!#5h~l«!5h~«!, ~A5!

i.e.,h(«) is a fixed point off B . Consider the unstable eigen
vector«u5(«1

u ,«2
u) t associated with the unstable eigenval

lu(uluu.1). By definition, c«1
u1d«2

u5lu«2
u , i.e., ch(«u)

1d5lu. The derivatives off B(z) equal 1/(cz1d)2, and
thereforef B8 @h(«u)#5(lu)22,1, which shows thath(«u) is
a stable fixed point. Moreover, the sequence$zn% of the it-
eratives of f B(z), zn115 f B(zn) starting from any initial
point zoÞh(«s) converges forn→` towardsh(«u).

The Möbius transform associated with a hyperbolic line
diffeomorphism therefore provides a simple way to comp
its invariant orientational properties~i.e., the unstable sub
spaces!. In particular, this analysis proves, as a corollary, th
if Bn5(Bi j

n ) is the nth power of a hyperbolic matrixB
PSL(2,R), then for anyzoÞh(«s) the limit

lim
n→`

B11
n zo1B12

n

B21
n zo1B22

n 5
«1

u

«2
u , ~A6!

holds, which is Eq.~5.18!.
The analysis can be extended to 2D nonlinear diffeom

phismsF~x!. In this case, a Mo¨bius transformf F* (x)(z) is
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associated with the differentialF* (x). The orientational
properties@i.e., a basiseu(x)5„e1

u(x),e2
u(x)…t# for the un-

stable vector spaceEx
u of F are recovered by considering th

composition

Fx
~n!~z!5 f F* „F

21~x!…+ f F* „F22~x!…+¯+ f F* „F2n~x!…~z!,
~A7!
yn
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.

which converges forn→` towards

lim
n→`

Fx
~n!~z!5

e1
u~x!

e2
u~x!

, xPC, ~A8!

for almost allz within any hyperbolic invariant submanifold
C of F.
.
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Chemical Reactor Analysis and Design~Wiley, New York,
1979!.

@36# Let m* be the invariant ergodic measure forF. If F andF21

are mixing within C then, for any measurable setD, B#C,
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limn→` m* @F2n(D)ùB#5m* (D)m* (B). Equation ~5.22!
follows from this property. To prove this, let us consider t
characteristic function of the setB:gB(x)51 if xPB and 0
otherwise. By definition,

E
D
gB„F

2n~y!…dy5E
F2n~D!

gB~y!dy5L@F2n~D!ùB#,

whereL~•! is the Lebesgue measure. IfF is area-preserving
and ergodic withinC then m* (A)5L(A)/L(C) for any mea-
surable setA#C. By applying the mixing property

lim
n→`

E
F2n~D!

gB~y!dy5L~C!m* ~D!m* ~B!

5L~D!E
C
gB~y!dm* ~y!,
which is Eq.~5.22! for elementary functions. Since Eq.~5.22!
holds for elementary functions, it also holds for continuo
functions which can be expressed as the superposition o
ementary functions.
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